CSAC 2021 The 1st International Electronic Conference on Chemical Sensors and Analytical Chemistry 01-15 JULY 2021 | ONLINE

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO

Simultaneous quantification of four principal NSAIDs through voltammetry and artificial neural networks using a modified carbon paste electrode in pharmaceutical Samples

Dr. Guadalupe Yoselin Aguilar Lira

Co-authors: Dr. Prisciliano Hernández Martínez, Dr. Giaan Arturo Álvarez Romero, Dr. Juan Manuel Gutiérrez Salgado.

Nonsteroidal anti-inflammatory drugs (NSAIDs)

The 1st International Electronic Conference on Chemical Sensors and Analytical Chemistry 01–15 JULY 2021 | ONLINE

Relieve pain, reduce high temperature and reduce inflammation.

Side effects

NSAIDs mechanism of action [1]

Peptic ulceration, digestive disorders, temporary deafness, recent studies mention that they may be related to heart attacks.

[1] Katzung, B.G. Trevor, A.J. (2015). Basic & clinical pharmacology: Thirteenth edition, Mc Gram Hill Education.

NSAIDs

The 1st International Electronic Conference on Chemical Sensors and Analytical Chemistry 01–15 JULY 2021 | ONLINE

Aspirin

Disadvantages:

Such as the need for sample preparation, long analysis times, high cost associated with the use and maintenance of the equipment.

If their use is constant

Pharmaceutical industry (HPLC) [1]

CSAC 2021 The 1st International Electronic Conference on Chemical Sensors and Analytical Chemistry 01-15 JULY 2021 | ONLINE

metallic: platinum, gold, etc.

Working electrode: Carbon paste electrode (CPE)

Carbon paste electrode modified with multi-wall carbon nanotubes (MWCNT-CPE)

Voltammetry

CSAC 2021 The 1st International Electronic Conference on Chemical Sensors and Analytical Chemistry 01–15 JULY 2021 | ONLINE

- Wide potential window
- The surface can be quickly renewed
- Easy preparation
- Miniature scale
- Incorporation of other materials
- High thermal stability
- Large contact surface area
- Fast electron transfer
- High sensitivity

Problematical:

- Analyze more than one analyte
- Solve the overlap of voltammetric signals

- Principal Component Analysis (PCA) [1,2]
- Chemometric Methods
- Partial least squares (PLS) [3]
- Artificial Neural Networks (ANN) [4,5]

Artificial neurons simulate the basic functions of biological neurons: Input, processing, output, and passing information to other neurons. Each input is given a weight to signify how important it is compared to other input.

Simeon, V.; Pavkovic, D.; Branica-Jurkovic, G. Anal. Chim. Acta 1992, 263, 37-42.
Díaz-Cruz, J. M.; Tauler, R.; Grabaric, B. S.; Esteban, M.; Casassas, E. J. Electroanal. Chem. Interfacial Electrochem. 1995, 393, 7-16.
Cabanillas, A. G.; Diaz, T. G.; Espinosa-Mansilla, A.; Lopez, F. S. Talanta 1994, 41, 1821-1832.
Chan, H.; Butler, A.; Falck, D. M.; Freund, M. S. Anal. Chem. 1997, 69, 2373-2378.

[5] Cladera, A.; Alpı'zar, J.; Estela, J. M.; Cerda', V.; Catasu' s, M.; Lastres, E.; Garcı'a, L. Anal. Chim. Acta 1997, **350**, 163-169.

Propose a methodology based on voltammetric methods together with ANNs as a modeling and calibration tool to quantify NSAIDs simultaneously.

Particular objectives:

- Build the proposed working electrode.
- Study the electrochemistry of NSAIDs with the proposed working electrode.
- Optimize instrumental variables for the quantification of NSAIDs with the Box Behnken design.
- Build artificial neural network models for the simultaneous quantification of NSAIDs.

Methodology

Electrochemical characterization

The 1st International Electronic Conference on Chemical Sensors and Analytical Chemistry 01–15 JULY 2021 | ONLINE

CSAC

2021

[1] Montgomery, D. C. Design and analysis of experiments, 8th ed.; Publisher: Wiley, USA, 2012.

Methodology

Quantification of NSAIDs by ANN

Data processing Generation of 27 voltammograms (using a 3⁵⁻² fractional factorial design).

CSAC

2021

A matrix of peak intensities of dimensions [189 x 27] (intensities x number of samples).

The matrix of concentrations of dimension [4 x 27] diclofenac, naproxen, (i.e., paracetamol, and ibuprofen), aspirin was not quantified in the model as it was considered only as an interferer.

01-15 JULY 2021 | ONLINE

Discrete Wavelet Transform (DWT) using the 4th level wavelet decomposition of a Daubechies function (db4) [1].

- All data sets were normalized in the interval of [-1,1].
 - The final input matrix to feed the ANN ٠ model has a dimension of [18 x 27].

The 1st International Electronic Conference

30.0

25.0

20.0

on Chemical Sensors and Analytical Chemistry

The pretreatment of the data

Methodology

Quantification of NSAIDs by ANN

ANN Model

- The described data set of 27 samples, were selected for the training set.
- The testing set was conformed using an external set of 10 additional samples randomly generated within the concentration range described above.
- The hidden layers were established through a trial-and-error process, modifying the number of neurons in the layers until an appropriate number of neurons were found that favored obtaining a satisfactory linear regression coefficient.
- The final MLP model was 18x10x8x4 (18 input neurons, 10 neurons in the first hidden layer, 8 neurons in the second hidden layer and 4 output neurons).
- The activation functions established were: purelin for the input layer, tansing for the two hidden layers, and purelin for the output layer.
- The chosen training algorithm was Bayesian regularization, with a training error set at a value of 0.001, together with a learning rate of 0.01.

MATLAB® R2021a (MathWorks, Natick, MA, USA) platform using the Deep Learning and Wavelet Toolboxes.

Electrochemical characterization

Figure 1. CVs obtained for the systems containing the NSAIDs and the supporting electrolyte (pH 7 BR buffer 0.1 mol·L⁻¹), using the proposed working electrode and in presence of aspirin. Potential window from 0 to 1.3 V and at a scan rate of 100 mV·s⁻¹; (a) individual for each NSAIDs, (b) mixture of the four NSAIDs.

Electrochemical characterization

pH study

The highest current intensity is obtained at pH 10 for the mixture of drugs.

Figure 2. CVs obtained for the NSAIDs mixture at different pHs (range of 7-10) in a 0.1 mol·L⁻¹BR buffer, using a potential window of 0 to 1.3 V and a scan rate of $100 \text{ mV} \cdot \text{s}^{-1}$.

Electrochemical characterization

Different CV scan rates were studied, and the maximum anodic peak current was plotted vs the square root of the scan rate for each NSAID.

A correlation coefficient greater than 0.99 was obtained after the proper statistical analysis, which suggests that the diffusion of the electroactive species to the surface of the electrode governs the oxidation processes.

Figure 3. CVs obtained for the NSAIDs mixture at different scan rates (10 to 300 mV·s⁻¹), using a potential window of 0 to 1.3 V.

Electrochemical characterization

Optimization of differential pulse voltammetry (DPV) for the quantification of NSAIDs

Box Behnken design (BBD)

- A BBD with three levels was used for the optimization of the four variables related to the DPV.
- 27 experiments were carried out, generating the corresponding voltammograms of NSAIDs.

The proposed second-order model regression that correlates the current response and the DPV factors is shown in equation (2).

$$Y = 1.747 + 0.22X_1 + 0.352X_2 - 0.935X_3 + 1.082X_4 - 0.476X_2^2 - 0.431X_2^2 - 0.308X_3^2 - 0.012X_4^2$$
(2)
-0.309X₁X₂ + 0.211X₁X₃ + 0.209X₁X₄ + 0.297X₂X₃ + 0.66X₂X₄ + 1.507X₃X₄

Table 1. Optimal DPV parameters found with the Box Behnken design

X ₁ (V)	X ₂ (s)	X ₃ (s)	X ₄ (V)	Υ (μΑ)
0.00585	0.75	0.05	0.05	5.24

Minitab® V.18 software.

Quantification of NSAIDs using ANN

Using the optimal parameters of the DPV to analyze the 27 samples considering different concentrations of the NSAIDs. using a 3⁵⁻² fractional factorial design.

• The testing set was conformed using an external set of 10 additional samples randomly generated within the concentration range described above.

Figure 5. 10 DPV was obtained at different concentrations of the NSAIDs, (ranging from 5×10^{-7} to 7×10^{-5} mol·L⁻¹). using a potential window of 0 to 1.3 V.

Quantification of NSAIDs using ANN

ANN modeling

- The final MLP model was 18x10x8x4 (18 input neurons, 10 neurons in the first hidden layer, 8 neurons in the second hidden layer and 4 output neurons).
- The relationship between the concentrations obtained and those expected was evaluated, both for the training and test phases.
- In this sense, the linear regression obtained from the comparison was a measure of the model's goodness.
- Given ideal conditions, the line must have a slope equal to 1 and its intersection equal to 0.
- The comparative graphs between the real concentrations of paracetamol, diclofenac, naproxen, and ibuprofen and those predicted with the MLP model for the training and test data set are shown in Figures 6 and 7, respectively.

Quantification of NSAIDs using ANN

ANN modeling

Figure 6. Comparison between the expected NSAIDs concentration and those obtained after MLP training phase.

CSAC 2021 The 1st International Electronic Conference on Chemical Sensors and Analytical Chemistry 01-15 JULY 2021 | ONLINE

Quantification of NSAIDs using ANN

Figure 7. Comparison between the expected NSAIDs concentration and those obtained during MLP test phase.

The high level of linearity allows having a linear regression coefficient of the data obtained very close to one (R=0.98) for paracetamol and diclofenac, while for the naproxen and ibuprofen, the correlation value was 0.87 and 0.78 respectively, aspirin was present as an interfering agent in the mixture.

Conclusions

- In this work, a potential tool for voltammetric determinations is presented. A combination of DPV and DWT-ANN allowed us to obtain satisfactory results for quantifying paracetamol, diclofenac, naproxen, and ibuprofen in the presence of aspirin.
- The use of DWT is helpful to compact voltammograms preserving the analytical information of the original records. Multivariable models created with ANN correctly describe the complexity in voltammograms caused by overlapping peaks without needing a pretreatment step on the samples.
- Finally, carbon paste electrodes with nanotubes are lowcost and easy-to-make devices that allow us to determine the drugs in the order of microgram per liter.

CSAC 2021 The 1st International Electronic Conference on Chemical Sensors and Analytical Chemistry 01–15 JULY 2021 | ONLINE

Thank for your attention