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Abstract: Disease diagnosis through breath analysis have attracted a significant attention in recent 12 

years due to its non-invasive nature, rapid testing ability and applicability for the patients of all 13 

ages. More than 1000 volatile organic component (VOC) exists in human breath, but only a selected 14 

VOCs are associated with specific diseases. Selective identifications of those disease marker VOCs 15 

by using array of multiple sensors is highly desirable in the current scenario. Not only the use of 16 

efficient sensors but also the use of suitable classification algorithms is essential for the selective and 17 

reliable detection of those disease markers in the complex breath. In the current study, we fabricated 18 

noble metals (Au Pd and Pt) nanoparticles functionalized MoS2 based sensor array for the selective 19 

identifications of different VOCs. Four sensors i.e. pure MoS2, Au/MoS2, Pd/MoS2 and Pt/MoS2 were 20 

tested in the exposure different VOCs like acetone, benzene, ethanol, xylene, 2-propenol, methanol 21 

and toluene at 50°C. Initially, principal component analysis (PCA) and linear discriminant analysis 22 

(LDA) were used to discriminate those seven VOCs. As compared to the PCA, LDA was able to 23 

discriminate well among the seven VOCs. Four different machine learning algorithms like k-nearest 24 

neighbors (kNN), decision tree, random forest and multinomial logistic regression was used to iden- 25 

tify those VOCs further. The classification accuracy of those seven VOCs by using KNN, decision 26 

tree, random forest and multinomial logistic regression were 97.14%, 92.43%, 84.1% and 98.97% re- 27 

spectively. These results authenticated that multinomial logistic regression performed best among 28 

all the four machine learning algorithms to discriminate and differentiate multiple VOCs popularly 29 

exists in human breath. 30 
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1. Introduction 33 

In the field of medical diagnostic and health care systems, breath analysis has gained 34 
a lot of interest for the non-invasive detection of diseases and monitoring health parame- 35 
ters [1,2]. More than 1000 volatile organic components (VOCs) are present in the exhaled 36 

breath, but only some of them are considered disease markers[3,4]. In this context, selec- 37 
tive detection of the different VOCs using smart sensor systems has a high demand for 38 

efficient breath analysis. Selective detection can also be achieved by using suitable pattern 39 
recognition algorithms on sensor signals. For early detection of disease, the combination 40 
of a highly selective sensors and an effective machine learning algorithm is required. Di- 41 

agnostic through breath is less time-consuming compared to the clinical process and, at 42 
the same time, it is cost-efficient as it does not require well-trained professionals and sen- 43 

sors are less costly[5,6]. 44 
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Chemiresistive sensors typically recognize target VOC by changing its resistance de- 1 
pending upon the adsorption-desorption properties of the analyte to the detecting layer 2 
surface. An extensive variety of materials are used for VOC sensing, including thin metal 3 

films [7], metal oxides [8–10], polymers [11], etc. Accessible surface functionalization pos- 4 
sibilities, high surface area to volume ratio, increased flexibility, high sensitivity, and tun- 5 

able bandgap make two-dimensional molybdenum disulfide (MoS2) an encouraging 6 
channel material to sense the VOC [12,13].  7 

Pattern recognition algorithm also plays an essential role in the detection of VOC. A 8 

suitable classifier is required to achieve an effective classification rate in VOC sensing 9 
based on the sensor data. Different algorithms like partial least squares discriminant anal- 10 

ysis [14], canonical discriminant analysis [15], k-nearest neighbor [4,16], Discriminant 11 
Function Analysis [17], support vector machine [18], random forest [19], logistic regres- 12 
sion [20], etc. were reported in the literature. In some of the reported literature, different 13 

types of neural network classifier were used [21–24].  14 
In the current study, we have used principal component analysis (PCA) and linear 15 

discriminant analysis (LDA) to visualize the data in lesser dimensions compared to the 16 
original extent. Also, four different supervised algorithms, k-nearest neighbour (kNN), 17 
decision tree, random forest, and multinomial logistic regression, were implemented to 18 

identify the best-suited algorithm based on their performance. 19 

2. Material and methods 20 

2.1.Preparation of MoS2 and noble metal nanoparticles solutions 21 

All materials MoS2 (Sigma Aldrich), gold (III) chloride (AuCl3, 99 %, Sigma Aldrich),  22 
palladium chloride (PdCl2, 60%, Molychem) and chloroplatinic acid (H4PtCl6xH2O, 40 %, 23 

Molychem) were analytical grade and used without further any purification. 0.2 Wt% 24 
MoS2 solution was prepared in deionized water and stirred for 1.5 h at room temperature 25 

to maintain homogeneity. And similarly, 0.1 MM aqueous solutions of noble metal nano- 26 
particles (Au,Pd,Pt) were prepared by adding corresponding metal salts in deionized wa- 27 
ter with continuous stirring and dropwise diluted HCl was also added to get stable and 28 

uniform nanoparticles at room temperature.  29 
Au, Pd and Pt nanoparticle loaded MoS2 samples were prepared by spray coating 30 

technique. Firstly, MoS2 solution was spray coated on washed SiO2/Si substrate and dried 31 
at room temperature. And in final step, nanoparticle solutions was spray coated on pre- 32 
viously deposited MoS2 and dried at room temperature.  33 

A thermal annealing was performed for 4 h at 250 ˚C to provide crystallization and 34 
thermal stability in all 4 samples (MoS2, Au-MOS2, Pd-MoS2 and Pt-MoS2). 35 

2.2. Fabrication of Sensors 36 

Au source and drain electrodes of 150 nm thickness were deposited on all four sam- 37 
ples by using electron bean evaporation unit. Sensors was then placed into a sensor holder 38 
and further sensing performance was studied.  39 

The sensor holder was  placed in glass sealed sensing chamber of size 650 ml on a 40 
heating plate. The sensing performance of prepared sensors was examined by static mode 41 

sensing setup where, VOCs were injected by using micro syringes (Hamilton micro sy- 42 
ringe) and sensor was recovered by flowing 450 SCCM synthetic air by using mass flow 43 
controller. The amount of injected VOC was calculated by using formula: C (ppm) = 2.46 44 

× (V1D/VM) × 103, where D (gm/mL), M (gm/mol) and V (Lit) represent density of the 45 
VOC, molecular weight of the VOC and volume of vaporization chamber respec- 46 

tively[13,25,26]. 7 different VOCs, i.e. acetone, 2-propanol, benzene, ethanol, methanol, 47 
toluene, and xylene were tested during the study. Sensing performance was recorded by 48 
using Keithley 6487 source meter applying 1 V constant bias. The sensitivity of the sensor 49 
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was calculated by formula; Ra-Rv/Ra×100 where Ra and Rv were the resistances of the 1 
sensor in the air and in target VOC. 2 

To read the generated output of sensors stored in CSV file a python script was used. 3 

All the algorithms, analysis, and plotting were performed on Python 3.7 and Jupiter note- 4 
book as a platform.  5 

3. Results and discussion 6 

3.1.VOC sensing 7 

As a reference ambient, synthetic air was used to perform the gas sensing measure- 8 
ments of four different sensors: pure MoS2, Au- MoS2, Pd- MoS2 and Pt- MoS2. Figure 1 9 

shows the change in resistance (MΩ) with respect to time at 50OC. In the presence of VOCs, 10 
as the exposer time increases, the resistance offered by the sensor is decreasing. This de- 11 
crease in resistance confirms that the sensor is n-type property. In the presence of seven 12 

distinct VOCs, i.e. acetone, 2-propanol, benzene, ethanol, methanol, toluene, and xylene 13 
Four different sensors, i.e. pure MoS2, Au- MoS2, Pd- MoS2 and Pt- MoS2, were observed 14 

and stored for further processing of data. 15 

 16 

Figure 1. Change in resistance offered by sensors (a) MoS2 (b) Au- MoS2 (c) Pd- MoS2 (d) Pt- MoS2 17 
with respect to time in presence of 7 VOCs. 18 

3.2. Data analysis 19 

Figure 2 describes the influence of volatile organic components (VOCs) on the out- 20 
comes of two-dimensionality reduction techniques: principal component analysis and lin- 21 
ear discriminant analysis. The measurement parameters were kept constant during the 22 

experiment. Operating temperature was 50OC, response was taken up to 600 sec. and the 23 
sample concentration was 100 ppm. 24 

The response obtained by the four different sensors for seven different VOCs was 25 
used for principal component analysis (PCA). The three-dimensional plot between the 26 
first principal component (PC1), second principal component (PC2), and third principal 27 

component (PC3) is represented in figure 2. As we have four independent variables (sen- 28 
sor responses), the maximum principal component obtained was four. Therefore, in this 29 

(a) (b) 

(c) (d) 
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analysis, we have considered only the first three principal components contributing the 1 
most to the explained variance. The total explained variance was 93.58%, in which PC1 2 
contributes 52.52%, PC2 contributes 30.91%, and PC3 contributes 10.14%. All seven VOCs 3 

have their compact cluster, and they have separated, but the separation between the clus- 4 
ter of acetone/2-propanol and benzene/toluene is quite less that increases the possibility 5 

of the misclassification.  6 

  7 

Figure 2. Scatter plot from the exposer of 4 sensors to seven VOCs in (a) PCA (b) LDA. 8 

Taking account of the problem of discrimination among the different VOCs, linear 9 

discrimination analysis was performed, too. In linear discriminant analysis (LDA), the 10 
same sensor response vector was used. Figure 2(b) shows that the employment of the clas- 11 
sifier allows the discrimination of all the seven VOCs. Thus, LDA is highly efficient for 12 

investigating the VOCs based on the sensor response. A three-dimensional plot is shown 13 
in figure 2(b), which clearly depicts the performance of LDA on the raw data (sensor re- 14 

sponse vector). The different VOCs are densely clustered within their groups, and they 15 
are well separated from each other. So there is a significantly less probability of misclas- 16 
sification among the VOCs. 2-propanol is slightly more stretched along the axis of the 17 

second linear discriminant function (LD2), and xylene is along the third discriminant 18 
function (LD3). The three discriminant function, LD1, LD2, and LD3 contributes 71.22%, 19 

27.42% and 1.21% respectively, the total resultant explained variance for the classifier be- 20 
comes 99.85%.  21 

3.3. VOC identification 22 

The previously discussed LDA and PCA plot gives only the visual representation of 23 

the separation of VOCs based on the sensor response. The goal of the sensor setup is to 24 
design a generalized model based on the known data during the training phase and tries 25 

predict the class when an unknown data sample is encountered. 26 
The supervised algorithm was performed in the current work to determine the VOCs; 27 

four different machine learning algorithms like k-nearest neighbour (kNN), decision tree, 28 

random forest, and multinomial logistic regression were used to identify those seven 29 
VOCs. The normalized sensor response was feed to the algorithms, and the whole data 30 

set was divided into training testing data with 70% and 30%, respectively. The data set 31 
consists of 4200 measurements of each sensor, with each class containing 600 data vectors 32 
and seven classes. So, 2940 vectors were used to train the model, and the remaining 1260 33 

vectors were used to test the model. For identification of VOCs, above 84% was the clas- 34 
sification accuracy for every classifier with an accuracy of 97.14%, 92.43%, 84.1%, 98.97% 35 

for kNN, decision tree, random forest, and multinomial logistic regression, respectively. 36 
A confusion matrix is used to calculate the classification accuracy, and the confusion ma- 37 
trix furnishes the observation into what components were mistakenly classified. Figure 38 

4(a) shows the confusion matrix of kNN where 11 samples of toluene were classified as 39 
xylene and 10 samples of benzene was wrongly predicted as ethanol. Figure 4(b) is a rep- 40 
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resentation of the confusion matrix obtained from the decision tree algorithm. The confu- 1 
sion matrix of the random forest and multinomial logistic regression are shown in Figures 2 
4(c) and 4(d), respectively. In multinomial logistic regression, only 12 benzene samples 3 

were identified as acetone, and one sample of xylene was identified as toluene. 4 
with an accuracy of 97.14%, 92.43%, 84.1%, 98.97% for kNN, decision tree, random for- 5 

est, and multinomial logistic regression, respectively. 6 

 7 

Figure 4. Confusion matrix of (a) k-nearest neighbour, (b) decision tree, (c) random forest, and (d) 8 
multinomial logistic regression 9 

4. Conclusions 10 

The capability of surface-functionalized MoS2 sensor to distinguish between the var- 11 
ious VOCs was appraised by PCA and LDA, in which LDA laid out the excellent separa- 12 
tion between VOCs. Further, to evaluate the effectiveness of sensor output to identify the 13 

VOCs, four different machine learning (supervised) based classification algorithms were 14 
implemented, and among them, k-nearest neighbour and multinomial logistic regression 15 

performed outstandingly with an accuracy of 97.14% and 98.97%, respectively. Thus, high 16 
selectivity and accuracy authenticate that the system discriminates and differentiates mul- 17 
tiple VOCs popularly exists in human breath. 18 

References 19 

1. S. Dragonieri, G. Pennazza, P. Carratu, and O. Resta, “Electronic Nose Technology in Respiratory Diseases,” Lung, vol. 195, no. 20 
2, pp. 157–165, 2017, doi: 10.1007/s00408-017-9987-3. 21 

2. P. Sahatiya, A. Kadu, H. Gupta, P. Thanga Gomathi, and S. Badhulika, “Flexible, Disposable Cellulose-Paper-Based MoS 2 /Cu 22 
2 S Hybrid for Wireless Environmental Monitoring and Multifunctional Sensing of Chemical Stimuli,” ACS Appl. Mater. 23 
Interfaces, vol. 10, no. 10, pp. 9048–9059, Mar. 2018, doi: 10.1021/acsami.8b00245. 24 



Chem. Proc. 2021, 3, x FOR PEER REVIEW 6 of 4 
 

 

3. F. S. Cikach and R. A. Dweik, “Cardiovascular Biomarkers in Exhaled Breath,” Prog. Cardiovasc. Dis., vol. 55, no. 1, pp. 34–43, 1 
2012, doi: 10.1016/j.pcad.2012.05.005. 2 

4. J. Pereira et al., “Breath analysis as a potential and non-invasive frontier in disease diagnosis: An overview,” Metabolites, vol. 5, 3 
no. 1, pp. 3–55, 2015, doi: 10.3390/metabo5010003. 4 

5. K. Arshak, E. Moore, G. M. Lyons, J. Harris, and S. Clifford, “A review of gas sensors employed in electronic nose applications,” 5 
Sens. Rev., vol. 24, no. 2, pp. 181–198, 2004, doi: 10.1108/02602280410525977. 6 

6. V. H. Tran et al., “Breath analysis of lung cancer patients using an electronic nose detection system,” IEEE Sens. J., vol. 10, no. 9, 7 
pp. 1514–1518, 2010, doi: 10.1109/JSEN.2009.2038356. 8 

7. A. Pundt, “Hydrogen in Nano-sized Metals,” Adv. Eng. Mater., vol. 6, no. 12, pp. 11–21, Feb. 2004, doi: 10.1002/adem.200300557. 9 
8. A. Hazra, “Amplified Methanol Sensitivity in Reduced Graphene Oxide FET Using Appropriate Gate Electrostatic,” IEEE Trans. 10 

Electron Devices, vol. 67, no. 11, pp. 5111–5118, Nov. 2020, doi: 10.1109/TED.2020.3025743. 11 
9. T. Gakhar and A. Hazra, “Oxygen vacancy modulation of titania nanotubes by cathodic polarization and chemical reduction 12 

routes for efficient detection of volatile organic compounds,” Nanoscale, vol. 12, no. 16, pp. 9082–9093, 2020, doi: 13 
10.1039/c9nr10795a. 14 

10. E. Kanazawa et al., “Metal oxide semiconductor N2O sensor for medical use,” Sensors Actuators B Chem., vol. 77, no. 1–2, pp. 72– 15 
77, Jun. 2001, doi: 10.1016/S0925-4005(01)00675-X. 16 

11. H. Bai and G. Shi, “Gas Sensors Based on Conducting Polymers,” Sensors, vol. 7, no. 3, pp. 267–307, Mar. 2007, doi: 17 
10.3390/s7030267. 18 

12. V. Selamneni, H. Raghavan, A. Hazra, and P. Sahatiya, “MoS 2 /Paper Decorated with Metal Nanoparticles (Au, Pt, and Pd) 19 
Based Plasmonic‐Enhanced Broadband (Visible‐NIR) Flexible Photodetectors,” Adv. Mater. Interfaces, vol. 8, no. 6, p. 2001988, 20 
Mar. 2021, doi: 10.1002/admi.202001988. 21 

13. P. Bindra and A. Hazra, “Selective detection of organic vapors using TiO2 nanotubes based single sensor at room temperature,” 22 
Sensors Actuators B Chem., vol. 290, pp. 684–690, Jul. 2019, doi: 10.1016/j.snb.2019.03.115. 23 

14. C. Di Natale et al., “Lung cancer identification by the analysis of breath by means of an array of non-selective gas sensors,” 24 
Biosens. Bioelectron., vol. 18, no. 10, pp. 1209–1218, Sep. 2003, doi: 10.1016/S0956-5663(03)00086-1. 25 

15. N. Fens et al., “External validation of exhaled breath profiling using an electronic nose in the discrimination of asthma with 26 
fixed airways obstruction and chronic obstructive pulmonary disease,” Clin. Exp. Allergy, vol. 41, no. 10, pp. 1371–1378, 2011, 27 
doi: 10.1111/j.1365-2222.2011.03800.x. 28 

16. Z. Haddi et al., “E-Nose and e-Tongue combination for improved recognition of fruit juice samples,” Food Chem., vol. 150, pp. 29 
246–253, 2014, doi: 10.1016/j.foodchem.2013.10.105. 30 

17. M. Ghasemi-Varnamkhasti, A. Mohammad-Razdari, S. H. Yoosefian, Z. Izadi, and M. Siadat, “Aging discrimination of French 31 
cheese types based on the optimization of an electronic nose using multivariate computational approaches combined with 32 
response surface method (RSM),” Lwt, vol. 111, pp. 85–98, 2019, doi: 10.1016/j.lwt.2019.04.099. 33 

18. T. Saidi, O. Zaim, M. Moufid, N. El Bari, R. Ionescu, and B. Bouchikhi, “Exhaled breath analysis using electronic nose and gas 34 
chromatography–mass spectrometry for non-invasive diagnosis of chronic kidney disease, diabetes mellitus and healthy 35 
subjects,” Sensors Actuators, B Chem., vol. 257, pp. 178–188, 2018, doi: 10.1016/j.snb.2017.10.178. 36 

19. E. C. Nallon, V. P. Schnee, C. Bright, M. P. Polcha, and Q. Li, “Chemical Discrimination with an Unmodified Graphene Chemical 37 
Sensor,” ACS Sensors, vol. 1, no. 1, pp. 26–31, 2016, doi: 10.1021/acssensors.5b00029. 38 

20. D. Poli et al., “Exhaled volatile organic compounds in patients with non-small cell lung cancer: Cross sectional and nested short- 39 
term follow-up study,” Respir. Res., vol. 6, no. 1, p. 71, Dec. 2005, doi: 10.1186/1465-9921-6-71. 40 

21. A. K. Srivastava, “Detection of volatile organic compounds (VOCs) using SnO2 gas-sensor array and artificial neural network,” 41 
Sensors Actuators, B Chem., vol. 96, no. 1–2, pp. 24–37, 2003, doi: 10.1016/S0925-4005(03)00477-5. 42 

22. J. Fu, G. Li, Y. Qin, and W. J. Freeman, “A pattern recognition method for electronic noses based on an olfactory neural network,” 43 
Sensors Actuators, B Chem., vol. 125, no. 2, pp. 489–497, 2007, doi: 10.1016/j.snb.2007.02.058. 44 

23. R. Dutta, D. Morgan, N. Baker, J. W. Gardner, and E. L. Hines, “Identification of Staphylococcus aureus infections in hospital 45 
environment: Electronic nose based approach,” Sensors Actuators, B Chem., vol. 109, no. 2, pp. 355–362, 2005, doi: 46 
10.1016/j.snb.2005.01.013. 47 

24. P. Montuschi et al., “Diagnostic performance of an electronic nose, fractional exhaled nitric oxide, and lung function testing in 48 
asthma,” Chest, vol. 137, no. 4, pp. 790–796, 2010, doi: 10.1378/chest.09-1836. 49 

25. R. Bhardwaj, V. Selamneni, U. N. Thakur, P. Sahatiya, and A. Hazra, “Detection and discrimination of volatile organic 50 
compounds by noble metal nanoparticle functionalized MoS2coated biodegradable paper sensors,” New J. Chem., vol. 44, no. 51 
38, pp. 16613–16625, 2020, doi: 10.1039/d0nj03491f. 52 

26. P. Bindra and A. Hazra, “Electroless deposition of Pd/Pt nanoparticles on electrochemically grown TiO 2 nanotubes for ppb 53 
level sensing of ethanol at room temperature,” Analyst, vol. 146, no. 6, pp. 1880–1891, 2021, doi: 10.1039/D0AN01757D. 54 

 55 


