TUNABLE ELECTROCHEMICAL SENSORS BASED ON CARBON NANOCOMPOSITE MATERIALS TOWARDS ENHANCED DETERMINATION OF CADMIUM, LEAD AND COPPER IN WATER

Laia. L. Fernández^{a,b}; Julio Bastos^c; Cristina Palet^a; Mireia Baeza^{b*}

^aGrup de Tècniques de Separació(GTS). Departament de Química. Universitat Autònoma de Barcelona. Carrer dels Til·lers, 08193, Bellaterra, Catalunya, Spain

^bGroup of biological treatment and of liquid and gaseous Effluents, Nutrient removal, and Odors and Volatile Organic ENOCOV Compounds (GENOCOV). Departament Química. Universitat Autònoma de Barcelona. Carrer dels Til·lers, 08193, Bellaterra, Catalunya, Spain.

^cGrup de Biotecnologia Molecular Industrial, Department d'Enginyeria Química, Universitat Politècnica de Catalunya, Rambla Sant Nebridi, 22, 08222 Terrassa, Catalunya, Spain

*mariadelmar.baeza@uab.cat

≮Introduction

- Composite Materials
- Electrode Construction
- Carbon Materials
- Electrochemical techniques

≮Results

- Carbon Materials
- Mercury Nanoparticles
- **⊀**Conclusions

Introduction

Introduction: Composite Materials

Composite material = material 1 + material 2 + material n

<u>Requirement</u>: the materials must not react with each other.

The composite material is a new material with new physical, chemical and mechanical properties.

Introduction: Electrode Construction

R. Montes, J. Bartrolí, F. Céspedes, and M. Baeza, "Towards to the improvement of the analytical response in voltammetric sensors based on rigid composites," *J. Electroanal. Chem.*, vol. 733, pp. 69–76, 2014.

Epotek H77

Carbon Materials

✓ Graphite
 X rGO
 ✓ MWCNTs

Graphite

Carbon Materials

✓ Graphite
 X rGO
 ✓ MWCNTs

rGO

Carbon Materials

✓ Graphite
 X rGO
 ✓ MWCNTs

MWCNTs

Carbon Materials

✓ GraphiteX rGO✓ MWCNTs

Epotek H77

Composites tested:

•			
Graphite (15 %, 20 %)	Epotek H-77		
rGO (15 %)	Epotek H-77		
MWCNTs (10 %)	Epotek H-77		

Introduction: Electrode Modification

Introduction: Electrochemical Techniques

Characterization techniques

- Cyclic Voltammetry (CV)
 Electrochemical Impedance Spectroscopy (EIS)

Measurement techniques

Square-Wave Anodic Stripping Voltammetry (SWASV)

Introduction: Cyclic Voltammetry (CV)

CV is the <u>measurement of the current that</u> <u>flows through an electrode</u> as a triangular variation of potential is applied. Peaks correspond to an electronic transfer between the electrode and a dissolved species.

Introduction: Electrochemical Impedance Spectroscopy (EIS)

EIS is a perturbative characterization of the dynamics of an electrochemical process. It is based on the <u>application of an alternating current and</u> <u>measure the resistance of the current to go through</u> <u>the material</u>.

Introduction: Square Wave-Anodic Stripping Voltammetry (SWASV)

14

B. K. Bansod, T. Kumar, R. Thakur, S. Rana, and I. Singh, "A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms," Biosens.

Bioelectron., vol. 94, no. March, pp. 443–455, 2017

Results: Carbon Material

Results: Carbon Material

DinoLite images of the electrodes' surface

a) Retrodispersive (left) and secondary electron (right) SEM images. b) 20% graphite electrode drop casted with HgNPs image. 17

G. V. Ramesh, M. D. Prasad, and T. P. Radhakrishnan, "Mercury nanodrops and nanocrystals," Chem. Mater., vol. 23, no. 23, pp. 5231–5236, 2011

Linear	Range	for	20%	Graphite
- Cd ²⁺	→ 0.1	-1	mg∙L	-1

Linear Range for Hg NPs - $Cd^{2+} \rightarrow 0.005-1 \text{ mg} \cdot \text{L}^{-1}$

Linear Range for Hg NPs - Pb²⁺ \rightarrow 0.045-1 mg·L⁻¹

Cu²⁺

Linear Range for 20% Graphite - $Cu^{2+} \rightarrow 0.057 - 1.14 \text{ mg} \cdot \text{L}^{-1}$

Linear Range for Hg NPs - $Cu^{2+} \rightarrow 0.1-1.14 \text{ mg} \cdot \text{L}^{-1}$

Conclusions

★The most suitable option of the non-modified electrode to determine Cd²⁺, Pb²⁺ and Cu²⁺ using SWASV is the composite electrode with 20% graphite.

- ★Hg nanoparticles are good option to modify composite electrodes to determinate those metals.
 - ★ Lower concentrations can be determined.
 - \bigstar For Cd²⁺ and Pb²⁺a wider linear range can be achieved

TUNABLE ELECTROCHEMICAL SENSORS BASED ON CARBON NANOCOMPOSITE MATERIALS TOWARDS ENHANCED DETERMINATION OF CADMIUM, LEAD AND COPPER IN WATER

Laia. L. Fernández^{a,b}; Julio Bastos^c; Cristina Palet^a; Mireia Baeza^{b*}

^aGrup de Tècniques de Separació(GTS). Departament de Química. Universitat Autònoma de Barcelona. Carrer dels Til·lers, 08193, Bellaterra, Catalunya, Spain

^bGroup of biological treatment and of liquid and gaseous Effluents, Nutrient removal, and Odors and Volatile Organic ENOCOV Compounds (GENOCOV). Departament Química. Universitat Autònoma de Barcelona. Carrer dels Til·lers, 08193, Bellaterra, Catalunya, Spain.

^cGrup de Biotecnologia Molecular Industrial, Department d'Enginyeria Química, Universitat Politècnica de Catalunya, Rambla Sant Nebridi, 22, 08222 Terrassa, Catalunya, Spain

*mariadelmar.baeza@uab.cat