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Abstract: The study aims to build a mathematical model capable of classifying biosamples with 10 

minor errors into groups corresponding to clinical diagnoses by the original output data of the 11 

mass-sensitive sensor array. One hundred forty-four calves were clinically and laboratory exam-12 

ined and divided by the health of respiratory organs into three groups. A sample of nasal secretion 13 

was taken from each calf. The gaseous phase over samples was measured using an array of 8 14 

mass-sensitive sensors with solid-state nanostructured coatings in the open detection cell. During 15 

the sorption and desorption of volatile substances excreted from the samples, the sensor responses 16 

were recorded in software and then processed by un-, semi – and supervised machine learning 17 

methods. In total, 50 algorithms for processing sensor data were studied, including t-SNA, 18 

self-learning model DBSCAN, Yarovsky algorithm, BOSSVS, SAXVSM, LearningShapelets, Mul-19 

tivariateClassifier. The nonlinear transformation of the original sensor data was used in order to 20 

obtain the simplest two-dimensional manifold on which all data points will be located separately, 21 

such as Locally Linear Embedding, Local Tangent Space Alignment, Hessian Eigenmapping, 22 

Modified Locally Linear Embedding, Isomap, Multi-dimensional Scaling, Spectral Embedding, 23 

t-distributed Stochastic Neighbor Embedding. The supervised machine learning models using the 24 

Dynamic Time Warping metric of similarity between two-time series and the k-NN algorithm for 25 

classification achieved a correct classification accuracy equal to 0.83.  26 

Keywords: sensor array; machine learning; original data transformation; classification; diagnostics; 27 

nasal secretion. 28 

 29 

1. Introduction 30 

Here we will look at developing a pipeline for stepwise processing of data coming 31 

from the eight sensors in the portable electronic nose. Our goal is to obtain a chain of 32 

software modules, the sequential application of which to raw data from sensors at the 33 

input generates the output number as the most plausible class for this data. Therefore, we 34 

have the classic classification problem. For the solution, we will construct a trainable 35 

model using the supervised learning method. The result is the processing pipeline in 36 

inference mode shown in Figure 1a. The main requirements for this pipeline are com-37 

putational compactness and speed of classification since it focused on integration into a 38 

separate diagnostic device, for example, a portable e-nose with an open detection cell. 39 

The choice of a classifier model and its training is a separate task, the solution of 40 

which is a processing pipeline that includes data visualization tools, modules for pre-41 

liminary processing of transformation, filtering, and normalization of data, a trained 42 

classifier model and tools for testing and evaluating the quality of classification.  43 
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 1 
Figure 1. The processing pipeline in inference mode (a) and training mode (b). 2 

 3 

Figure 1b shows this pipeline in training mode. The main requirement for this mode 4 

is the convenience of replacing models and assessing the model quality. 5 

2. Methods and objects 6 

The data from portable e-nose with eight piezoelectric sensors covered by 7 

nanostructured coatings [1] was used. The objects of analysis were samples of nasal se-8 

cretions of calves (n=144) to diagnose the respiratory disease (rhinitis, bronchitis, pneu-9 

monia). Each calf was examined by clinical and laboratory methods, including Wisconsin 10 

respiratory scoring chart, induced cough. The calves were divided into three classes 11 

(“sick” – calves with pneumonia and trachea bronchitis (n=35), “subclinical” – calves 12 

with first sign of respiratory disease, rhinitis, bronchitis (n=69), “normal”- calves without 13 

sign of respiratory disease (n=30)). For each calf, the sample of nasal secretion was col-14 

lected and analyzed by portable e-nose. The measurement mode was described in work 15 

[1]. Some of the samples from calves with pneumonia were investigated by bacteriolog-16 

ical, molecular genetic methods for common viruses and bacteria of respiratory disease in 17 

calves. We suggest that the volatile profile of nasal secretion with respiratory disease will 18 

be different depending on the degree and depth of damage to the respiratory system.  19 

3. Developing a processing pipeline in training mode 20 

The first step here is an exploratory analysis of the existing dataset of raw data from 21 

the e-nose sensors and developing a classification concept. According to the measure-22 

ment mode of gas phase analysis using e-nose in each experiment, the sensors generate 23 

eight sequences of numbers (up to 200 per sensor). Each experiment can be assigned to 24 

one of three classes with labels: 1, 0, -1 (“sick”, “subclinical”, “normal”). Figure 2 shows 25 

an example of plots for data from sensors called "Chrono-Frequency-Gram" (CFG).  26 

According to the measurement mode, CFG contains three stages of sensor operation: 27 

Time interval from 0 to 80 seconds – sorption; the volatile compounds, excreted from 28 

secretion sample, enter the pre-sensory volume into detection cell and interact with 29 

coatings; 30 

Time interval from 80 to 85 seconds – depressurization, uninformative process;  31 

Time interval from 85 to 200 seconds – desorption, the volatile compounds is spon-32 

taneously removed from the sensor coatings and detection cell.  33 

The following describes the processing of data obtained only at the first stage. 34 

Analysis of the raw data shows that the use of the first CFG values can introduce signif-35 

icant errors due to their strong noisiness for many experiments, and therefore, for further 36 

processing, values indexed from 13 to 73 are used only. The noise of the first 13 seconds 37 

connects with the non-automatic moving of the device with an open detection cell. 38 
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 1 
Figure 2. Chrono-Frequency-Gram’s from the eight e-nose sensors for experiment #126. The 2 

classification label is 0. The horizontal time axis x is the seconds, and the vertical axis y is the QCM 3 

frequency deviation in hertz. 4 

 5 

We will associate with these data from each sensor a numerical sequence of dimen-6 

sion 60. Considering physical specifics of these data, coming from microbalances, as a 7 

monotonic display of mass accumulation on the sorbent over time, we will use not the 8 

sequence of frequency deviations itself but the calculated derivative of this sequence. We 9 

will calculate the derivative of a noise-distorted sequence using the method of A. Sa-10 

vitzky, M. J. E. Golay published in [2]. Figure 3 shows the CFG derivative sequences for 11 

all sensors of the same experiment as in Figure 2. 12 

 13 
Figure 3. Sensors sequence derivative plots for sample #126. 14 

 15 

The sequences of values of the derivation of the signal from the sensors will be fur-16 

ther used as input data. Their dimension is also 60 and they should be considered pre-17 

cisely as time series, but not just vectors of the same dimension. Their values do not mean 18 

individual properties: they cannot be rearranged, cannot be normalized and scaled sep-19 

arately, and therefore most of the feature engineering methods cannot be used for data 20 

preprocessing.  21 

Following the main stages of exploratory data analysis, we visualize the existing 22 

dataset. To reduce the dimension, we will concatenate the time series from all sensors for 23 

each experiment and find the projection of the resulting 480-dimensional vectors onto the 24 

two-dimensional space by finding a suitable two-dimensional manifold UMAP - Uni-25 

form Manifold Approximation and Projection for Dimension Reduction [3]. 26 
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Figure 4 shows labeled “sick” (red) and “normal” (green) data points. Various algo-1 

rithms can be used to classify time series. Since in the literature we did not find examples 2 

of algorithms that work well for the classification of short series like ours, it was decided 3 

to conduct a study of many machine learning (ML) algorithms based on different ap-4 

proaches. For this, two fairly powerful libraries for machine learning on time series were 5 

chosen: SKTIME, developed by the Alan Turing Institute [4] and pyts - A Python Package 6 

for Time Series Classification [5]. These libraries can work with the convenient and pop-7 

ular representation of Pandas Dataframe data but require different formats for the 8 

training dataset.  9 

 10 
 Figure 4. 2-D data representation using UMAP technology. 11 

 12 

SKTIME uses a specific representation of data in the form of a Nested Pandas Data-13 

frame. This view requires the formation of a table in the form of a Pandas Dataframe in 14 

which experiments are placed in rows (we have 144), in columns - time series corre-15 

sponding to one sample (we have 8 sensors - 8 Pandas Dataframe columns), and in each 16 

cell of 144x8 Pandas Dataframe are placed the time series themselves obtained from the 17 

sensor signals. We will here use the derivative values as a time series with 60 values for 18 

this series.  19 

Pyts uses Numpy ndarray 3-D array representation of data. The first index shows 20 

the number (starting from zero) of the sample (we have from 0 to 143), the second index 21 

shows the sensor number (from zero to 7), the third index shows the time stamp in the 22 

time series (we have from 0 to 59). For training, class labels are placed in a separate array 23 

of 144, whose values are 1, 0, -1. Thus, the preprocessing modules in the training mode 24 

form the data sets necessary for training the model. 25 

4. Machine learning model development. 26 

Next, we will list all the ML classifier models that have been tested in this pipeline 27 

and give the results of their work. Then, after discussing the results, a model will be de-28 

scribed that, rather unexpectedly, gave good results (Table 1). Considering the obtained 29 

results of training various ML models developed specifically for the classification of time 30 

series, it can be seen that the classification accuracy turns out to be very low. Of course, 31 

the problem was solved on too little dataset. The number of experiments (144) is not 32 

enough to train a complex model. However, we believe that the main reason for this 33 

quality of models is the small length of the series and their insufficient diversity. Both of 34 

these shortcomings are caused by the physics of sensors and cannot be improved at the 35 

level of data preprocessing. The possibility of improving the quality of the classification 36 

can only be found in finding the best models of the trained classifiers. This conclusion is 37 
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confirmed by a significant improvement in accuracy when applying the model shown in 1 

the last row of the Table 1. 2 

 3 

Table 1. The machine learning classifier models tested in the pipeline and accuracy of its classification. 4 

Method Module Accuracy 

Bag-Of-Symbolic Fourier Approximation -Symbols in Vector 

Space 
pyts.classifier.BOSSVS 0.5 

k-nearest neighbors classifier pyts.classifier.KNeighborsClassifier 0.5 

Symbolic Aggregate approximation and Vector Space Model. pyts.classifier.SAXVSM 0.4 

Learning Time-series Shapelets pyts.classifier.LearningShapelets 0.4 

Classifier wrapper for multivariate time series pyts.classifier.MultivariativeClassifier 0.6 

Applies estimators to columns of an array or pandas DataFrame sktime. ColumnEnsembleClassifier 0.5 

Bag-Of-Symbols Ensemble technic BOSSEnsemble 0.6 

Tree ensemble method, referred to as time series forest sktime.TimeSeriesForestClassifier 0.6 

k-NN DTW Similarity 1-NNDTWClassifier 0.7 

 5 

This machine learning model is a simple k-NN classifier; for classification, an object 6 

is assigned to the class that is most common among the k neighbors of a given element, 7 

whose classes are already known. We used the model of a single neighbor k = 1, which 8 

made it possible to work with such a small amount of training dataset. However, instead 9 

of the common metrics for determining the distance between time series, we used a spe-10 

cial metric for such a series called dynamic time warping (DTW). It should be noted that 11 

such a model was studied earlier [6] but proved to be insufficiently effective. Our task 12 

turned out to be the only one sufficiently accurate to implement the processing of signals 13 

from e-nose sensors in model inference mode. 14 

A feature of calculating the DTW metric is the displacement of adjacent samples of 15 

the sequences during the calculation so that they use the most significant similarity of 16 

curves with specific restrictions and rules. To speed up the calculation, instead of the 17 

exact value of the metric, the definition of its lower bound is often used. We did this also 18 

in our work. Below is a fragment of the main module of the classifier model based on the 19 

use of the lower bound LB Keogh [7]. 20 

def knn(train,test,w): 21 

    preds=[] 22 

    for ind,i in enumerate(test): 23 

        min_dist=float('inf') 24 

        closest_seq=[] 25 

        #print ind 26 

        for j in train: 27 

            if LB_Keogh(i[:-1],j[:-1],5)<min_dist: 28 

                dist=DTWDistance(i[:-1],j[:-1],w) 29 

                if dist<min_dist: 30 

                    min_dist=dist 31 

                    closest_seq=j 32 

        preds.append(closest_seq[-1]) 33 

    return classification_report(test[:,-1],preds) 34 

Below is a screenshot of evaluating the quality of this model on “sick”/”normal” 35 

classes if use catted training dataset contains 75 experiments only: 36 
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               precision    recall     f1-score    support 1 

 2 

         0.0       0.67      1.00      0.80         6 3 

         1.0       1.00      0.25      0.40         4 4 

 5 

    accuracy                           0.70        10 6 

   macro avg       0.83      0.62      0.60        10 7 

weighted avg       0.80      0.70      0.64        10 8 

 9 

The precision of kNN classification model is 83 %, which is appropriate for screen-10 

ing diagnostic tasks, mainly using raw sensor data. 11 

4. Conclusion 12 

In this work, we have built a data processing pipeline from an eight-sensor e-nose, 13 

which allows us to input raw data from sensors, transform them into time series of one 14 

minute in duration and classify them into two classes: “normal” or “sick”, as well as to 15 

separate the subclinical case when reliable decision-making on data is an unacceptable 16 

risk. Using a machine learning model with f a special time series comparison metric made 17 

it possible to train the model to an accuracy of 83% even on 75 experiments. 18 

 19 
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