CUSTOMIZED SCREEN-PRINTED ELECTRODES BASED ON Ag-NANOSEEDS FOR ENHANCED ELECTROANALYTICAL RESPONSE TOWARDS Cd(II), Pb(II) AND As(V) IN AQUEOUS SAMPLES

<u>KARINA TORRES-RIVERO*</u>, CLARA PÉREZ-RÀFOLS, JULIO BASTOS-ARRIETA, NÚRIA SERRANO, VICENÇ MARTÍ AND ANTONIO FLORIDO

AGENDA

➢ Heavy Metals contamination problematic

➢Objectives

≻Methodology

➢ Results

➤Conclusions

HEAVY METAL WATER CONTAMINATION

Waste water from a gold mine flows into the forest. Guyana, South America. kakteen / shutterstock

Heavy metal ions

- ✓ High toxicity
- Non-biodegradability
- Bioaccumulation
- Adverse health effects in humans

Lead	Copper	Mercury		WHO	EU Directive 2020/2184
			Pb(II)	10 μg/L	10 μg/L
			Cd(II)	3 μg/L	5 μg/L
Ars	enic C	Cadmium	As(V)	10 µg/L	10 µg/L

Source: https://theconversation.com/acid-drainage-the-global-environmental-crisis-youve-never-heard-of-83515

HEAVY METAL WATER CONTAMINATION

Heavy Metal Detection Methods

- Nanoparticles/Screen-printed electrodes¹
- Flameless atomic adsorption spectrometry (FAAS) Inductively coupled plasma mass spectrometry (ICP-MS) ✓ Hydride generation atomic fluorescence spectrometry (HG-AFS) ✓ ELECTROCHEMICAL TECHNIQUES: ANODIC **STRIPPING VOLTAMMETRY (ASV)** LOWER FAST LOW COST DETECTIO ANALYSIS LIMITS

¹Torres-Rivero, K.; Florido, A.; Bastos-Arrieta, J. Recent Trends in the Improvement of the Electrochemical Response of Screen-Printed Electrodes by Their Modification with Shaped Metal Nanoparticles. *Sensors* **2021**, *21*, 2596.

Voltammetric determination of HMIs based on the use of carbon-nanofiber-based screen-printed electrodes (SPCNFEs) modified with silver nanoparticles (Ag-NPs)

1. Ag-Seeds Synthesis²

2. Ag-Nanoseeds characterization

- Scanning electron microscopy
 (SEM)
- Transmission electron microscopy (TEM)

3. SPCNFE Modification

Heat at 50 °C for 30 minutes

METHODOLOGY

DS 110

4. Modified SPCNFE Surface characterization

Scanning Electron Microscopy (SEM)

	Pb(II)	Cd(II)	As(V)
Buffer	0.1 mol/L Acetate buffer pH 4.5	0.1 mol/L Acetate buffer pH 4.5	0.01 mol/L HCl pH 2.0
Standard	1 mg/L	1 mg/L	1 mg/L

Cd(II) As(V) Pb(II) E_d -1.4 V -1.4 V -1.3 V T_d 180 s 180 s 120 s Scanning -1.4 V - 0.0 V -1.4 V – 0.0 V -1.3 V - 0.65 V **Potential**

DPASV Parameters

1. Ag-Nanoseeds characterization³ **2.** Ag-NS-SPCNFE Surface characterization⁴

SEM micrograph

Ag-Nanoseeds

- Spherical shape
 - 12.2 ± 0.4 nm

TEM micrograph

³Torres-Rivero, K.; Torralba-Cadena, L.; Espriu-Gascon, A.; Casas, I.; Bastos-Arrieta, J.; Florido, A. Strategies for Surface Modification with Ag-Shaped Nanoparticles: Electrocatalytic Enhancement of Screen-Printed Electrodes for the Detection of Heavy Metals. *Sensors* **2019**, *19*, 1–14

⁴Torres-Rivero, K.; Pérez-Ràfols, C.; Bastos-Arrieta, J.; Florido, A.; Martí, V.; Serrano, N. Direct As(V) determination using screen-printed electrodes modified with silver nanoparticles. *Nanomaterials* **2020**, *10*, 1–10

8

Ag-NS-SPCNFE Electrochemical Characterization

Analyte	LOD (µg.L ⁻¹)	Linear Range (µg.L ⁻¹)	R ²	Sensitivity (nA µg⁻¹ L) (SD)
Pb(II)	3.3	10.9-99.6	0.999	103 (3)
Cd(II)	3.7	12.2-73.4	0.992	22 (1)
As(V)	2.6	8.9 - 40.0	0.991	260 (10)

RESULTS

Ag-NS-SPCNFE-Application in real sample

Tap water samples were collected from the local water distribution network managed by Aigües de Barcelona Company https://www.aiguesdebarcelona.cat/

	As(V)		
	CAs(V) (μg.L ⁻¹)	SD (µg.L ⁻¹)	
DPASV	10.04	0.37	
ICP-MS	10.70	0.20	

CONCLUSIONS

✓ Ag-Nanoseeds were **synthesized**, microscopically **characterized**, and **used for the modification of SPCNFE**.

✓ Ag-NS-SPCNFE was suitable for determining Pb(II), Cd(II), and As(V) at low μ g.L⁻¹ levels.

✓ Electrochemical characterization showed wider linear ranges for Pb(II) and Cd(II) determination but lower sensitivities as compared to As(V).

✓ LODs achieved in this investigation are equal or lower than other LODs previously reported.

✓The suitability of Ag-NS-SPCNFE for the determination of As(V) in spiked water samples, achieving comparable results with ICP-MS with good reproducibility.

Acknowledgments

This research has been funded by Ministerio de Ciencia, Innovación y Universidades, and European Union Funds for Regional Development (FEDER), projects CTM2015-68859-C2-2-R and CGL2017-87216-C4-3-R, as well as by the Generalitat de Catalunya (Project 2017SGR312).

PhD Grant: Spanish Ministry of Education, Culture and Sports

Thank you for your attention!

CUSTOMIZED SCREEN-PRINTED ELECTRODES BASED ON Ag-NANOSEEDS FOR ENHANCED ELECTROANALYTICAL RESPONSE TOWARDS Cd(II), Pb(II) AND As(V) IN AQUEOUS SAMPLES

<u>KARINA TORRES-RIVERO</u>, CLARA PÉREZ-RÀFOLS, JULIO BASTOS-ARRIETA, NÚRIA SERRANO, VICENÇ MARTÍ AND ANTONIO FLORIDO

