The 1st International Electronic Conference on Entomology

01-15 JULY 2021 | ONLINE

IECE

2021

Efficacy of Botanical Extracts Against Storage Insect Pests *Tribolium confusum* (confused flour beetle) and *Sitophilus oryzae* (Rice Weevil)

B.G.B. Hemantha Piris¹, Kandiah Pakeerathan²,^{*} and Sairam Sayanthan¹, ¹Department of Biosystem Technology, Faculty of Technology, University of Jaffna, Sri Lanka ²Department of Agricultural Biology, Faculty of Agriculture, University of Jaffna, Sri Lanka

*Correspondence: pakeerathank@univ.jfn.ac.lk; Tel.: +94-077-696-9511

INTRODUCTION

- The storage pests are the architects.
- Current major solution for storage pest is "Fumigation".
- Synthetic chemicals are toxic to humans and are creating deleterious impacts on biodiversity.
- Hi-tech preventive and curative methods such as electronic nose, near-infrared spectroscopy, nanoparticle-based inert dust, acoustic technology are being practiced in commercial level storage pest control
- Plant based extracts proved to be eco-friendly and affordable mean to manage stored product pests

• Phytochemicals are one of alternate for synthetic pesticides.

- Rice weevils and Flour beetles are the major Storage pests in Sri Lanka.
- Yellow oleander, Neem, Gliricidia, Thulasi are some of plants that rich in phytochemicals.

- Taberz (2017), have proved the Antimicrobial activity of Yellow oleander.
- thevetin A, thevetin B, Oleandrin, Neriifolin due to Veronika bandara(2010)

To evaluate Efficacy of Botanical Extracts Against Storage Insect Pests *Tribolium confusum and Sitophilus oryzae*

MATERIALS & METHODOLOGY

Experimental setup

Treatment Number	Treatment-Set 1
T1	Cascabela thevetia Dried flower
T2	Cascabela thevetia Dried Leaf
T3	Cascabela thevetia Dried seed
T4	Cascabela thevetia fresh leaf
T5	Cascabela thevetia Fresh seed
T6	Ocimum tenuiflorum Fresh Leaf
T7	Azadirachta indica Fresh Leaf
T8	Gliricidia sepium Fresh Leaf
T9	Non treated (Control)

IECE 2021

Extraction of Botanicals

Disease free fresh plants collected and dried

Washed and surface sterilized 3% NaOCl and dried

Made into powder using electric grinder

Water based solvent extraction and filtration

[Mihaylova and Lante, 2019]

100% (10g/100mL) concentration extracts stored at 4 °C

IECE 2021

IECPS 2020

Assessment and Calculations

The insect mortality percentage and repellency percentage were calculated using the formula below

Mortality $\% = \frac{\text{Number of death insects}}{\text{Total number of insects released}} x 100 \%$

Repellency $\% = \frac{\# \text{ of insects in un} - \text{treated samples} - \# \text{ of insects in treated samples}}{\# \text{ of insects in un} - \text{treated samples}} x 100 \%$

Statistical Analysis

- Data collected in the whole study was analyzed by Micrsoft Excel 2013 and SAS software (9.1 version).
- Tukey's HSD multiple comparison test was performed to identify the best treatment at *P* < 0.05 using the same software.

RESULTS & DISCUSSION

Mortality % of rice weevil to different plant extracts

Mortality % of red flour beetle to different plant extracts

TIME

Aqueous extraction	After 24 hours	After 48 hours	After 5 days
Cascabela thevetia Dried flower	61.11 ^{cd}	66.67 ^b	59.15 ^b
Cascabela thevetia Dried Leaf	97.96ª	91.30 ª	75.00ª
Cascabela thevetia Dried seed	71.79 ^{bc}	43.75 ^d	38.71 ^c
Cascabela thevetia fresh leaf	88.89ª	86.36ª	78.05ª
Cascabela thevetia Fresh seed	63.01°	66.67 ^b	57.14 ^b
Ocimum tenuiflorum Fresh Leaf	70.13 ^c	63.01 ^b	70.13 ^{ab}
Azadirachta indica Fresh Leaf	78.05 ^b	64.86 ^b	64.86 ^{ab}
Gliricidia sepium Fresh Leaf	61.11 ^{cd}	55.07°	4 1.27 ^c
Non treated (Control)	36.16 ^e	10.37 ^e	0.00 ^d

Values with the same alphabets are not significantly different according to the Tukey's HSD at 95% confidence interval

Aqueous extraction	After 24 hours	After 48 hours	After 5 days
Cascabela thevetia Dried flower	75.00 ^{bc}	71.79 ^{bc}	50.75 ^{bc}
Cascabela thevetia Dried Leaf	96.91ª	91.30ª	66.67 ^b
Cascabela thevetia Dried seed	98.99ª	95.83ª	81.79ª
Cascabela thevetia fresh leaf	75.00 ^{bc}	71.79 ^{bc}	50.75 ^{bc}
Cascabela thevetia Fresh seed	79.52 ^{bc}	78.05 ^{bc}	43.75 ^{cd}
Ocimum tenuiflorum Fresh Leaf	85.06 ^b	85.06 ^b	59.15 ^{bc}
Azadirachta indica Fresh Leaf	82.35 ^b	79.52 ^{bc}	46.15 ^{cd}
Gliricidia sepium Fresh Leaf	61.11 ^d	52.94 ^d	46.15 ^{cd}
Non treated (Control)	15.00 ^e	0.00 ^e	0.00 ^e

Table 2. Repellency effect of botanicals on red flour beetle

Values with the same alphabets are not significantly different according to the Tukey's HSD at 95% confidence interval

Conclusions

- This study found that dried *C. thevetia* seeds and leaf extracts cause highly significant mortality and repellent effect in both rice weevils and red flour beetles.
- *Cascabela thevetia* seeds and leaf are more potential source to prepare insect protectant.
- *Cascabela thevetia* seeds are more toxic to human, therefore, further study related to side effects assessment is recommended.

Acknowledgments

