MOLECULAR EMITTERS AS A TUNABLE LIGHT SOURCE FOR OPTICAL MULTISENSOR SYSTEMS

<u>Anastasiia Surkova</u>^{1,2}, Aleksandra Paderina¹, Andrey Legin¹, Elena Grachova¹, Dmitry Kirsanov¹

¹ Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
² Samara State Technical University, Samara, Russia

OPTICAL MULTISENSOR SYSTEM (OMS)

- <u>Multisensor system</u> an analytical device
 - composed of two or more sensors
 - optimized for a particular analytical task
 - employs chemometrics to maintain accuracy
- OMS composed of
 - light sources
 - photodetectors
 - optical fibers
 - 3D-printed parts, etc.

- Advantages
 - inexpensive
 - portable
 - on-site/on-line implementation

PURPOSE OF THIS STUDY

- To develop OMS prototype based on molecular emitters as a tunable light source
- To study a real-life applicability of the developed prototype

MOLECULAR EMITTERS AS A LIGHT SOURCE

- Properties
 - laser diode excites the emission of molecular emitters
- Requirements to choose emitters
 - absorption spectrum must not overlap with emission spectrum
 - excitation radiation must fit into the absorption maximum
 - brightness (quantum yield of emission)
 - emission wavelength in solid phase
- Advantages
 - high versatility
 - short analysis time
 - adjustment of the emission wavelength for a specific application

5

Cu(I) complexes

[Cu(MePPy₃)I]₂[Cu₂I₄] (1) [Cu₄I₄(py)₄] (2) [Cu(Tpdp)I] (3) [CuCl(PPh₃)₂(py)] (4) [Cu(PPh₃)₃(4-Mepy)]Br (5) [Cul(PPh₃)₂(4-Mepy)] (6)

Ir(III) complexes

 $[Ir(dfppy)_{2}(bpbpy)]PF_{6} (1)$ $[Ir(ppy)_{2}(bpbpy)]PF_{6} (2)$ $[Ir(pybt)_{2}(bpbpy)]PF_{6} (3)$ $[Ir(mpqc)_{2}(bpbpy)]PF_{6} (4)$

EXAMPLES OF MOLECULAR EMITTERS

MOLECULAR EMITTERS AS A LIGHT SOURCE

EXPERIMENTAL

	(1) Ir(III)-based OMS ^a	(2) Cu(I)-based OMS
Sample volume	0.15 mL	4 mL
Sample placement	glass cup (1 cm in diameter)	polystyrene Petri dish (3.5 cm in diameter)
Excitation source	laser diode (λ_{exct} = 365 nm)	laser diode (λ_{exct} = 385 nm) / UV flashlight (λ_{exct} = 365 nm)
Detector	fiber-optic UV-vis spectrometer AvaSpec-ULS2048CL-EVO	

^a Gitlina A.Y., Surkova A., Ivonina M.V., et al. Dyes Pigments. 2020; 180:108428. doi: 10.1016/j.dyepig.2020.108428

RESULTS FOR MODEL SOLUTIONS

Individual calibration series for Co(II) and Cu(II) nitrates

excitation source: a laser diode, λ_{exct} = 365 nm; b laser diode, λ_{exct} = 385 nm / UV flashlight, λ_{exct} = 365 nm

PRACTICAL APPLICATION

- Calibration sample set for PO_4^{3-}
 - 9 samples
 - 0-0.96 mg/L with 0.12 mg/L step

- Calibration sample set for F⁻
 - 11 samples
 - 0-0.4 mg/L with 0.04 mg/L step

 Test set: 5 samples from tap, rivers (Neva, Volga, Tatyanka) and lake Kaban

Samples were colored in accordance with the procedures described in GOST 18309-2014 and GOST 4386-89.

PRACTICAL APPLICATION

Determination of fluoride and phosphate in surface water

excitation source: UV flashlight (λ_{exct} = 365 nm); interval: ^a 600–750 nm; ^b 450–800 nm

CONCLUSIONS

- Ir(III) and Cu(I)-based complexes are suitable light sources for OMS
- Ir(III) luminescent complexes have bright controlled emission
- Cu(I) complexes are easier to produce, cheaper, and environmentally friendly
- Using UV flashlight instead of laser diode as excitation source is more convenient
- Developed OMS allows determination of fluoride and phosphate in surface waters with high accuracy

ACKNOWLEDGEMENTS

- Saint Petersburg State University
 - PostDoc program
- RSF project #19-79-00076
- Samara State Technical University
- CSAC2021 organizers

