

SPECIES COMPOSITION AND SEASONAL PATTERNS OF BUTTERFLIES AT PERI- URBAN AREAS NEAR PUNE, MAHARASHTRA

INTRODUCTION

What are Butterflies?

- Order Lepidoptera
- Important Pollinators
- Vibrant, attractive, charismatic
- Feed on nectar, rotting fruits, dung
- >1500 butterflies in India
- >330 butterflies in the western ghats.

Why butterflies for this project?

- Ecological indicators
- Can be easily seen
- Taxonomy, status and distribution known

Why Saswad?

- Site of many typical grassland species
- Mosaic of habitats
- Rapidly expanding urban sprawl

Delias eucharis

Junonia orithya

Saswad-Waghapur area

OBJECTIVES

- 1. To study the Butterfly Diversity, Abundance and Distribution at Saswad.
- 2. To study the Seasonal Variation Patterns of Butterflies at Saswad.
- 3. To understand the effect of various anthropogenic disturbances on Butterflies

MATERIALS AND METHODS

*Annasaheb Kulkarni department of Biodiversity, MES Abasaheb Garware college of Science, Pune

RESULTS

1. TOTAL DIVERSITY:

	Family	Genera	Species	Individuals
Farmland	5	21	28	234
Plantation	5	24	35	477
Grassland	4	30	39	574
Total	5	37	53	1285

2. SITE WISE DIVERSITY

	Farmland	Plantation	Grassland
Taxa_S	28	35	39
Individuals	234	477	574
Shannon_H	2.70	2.73	2.64
Dominance_D	0.09	0.10	0.12
Evenness_e^H/S	0.53	0.44	0.36
Margalef	4.95	5.51	5.98
Equitability_J	0.81	0.77	0.72
Fisher_alpha	3.30	8.70	9.46

3. SITE SIMILARITY AND OVERLAP

Plantation and Grassland closest in terms of composition

Bray-Curtis similarity matrix				
	Farmland	Plantation	Grassland	
Farmland	1.000	0.475	0.449	
Plantation	0.475	1.000	0.719	
Grassland	0.449	0.719	1.000	

Presenter- Madhura Agashe* Guide- Dr.Ankur Patwardhan*

RESULTS

4. SEASONAL VARIATION

Late Monsoon	Early Winter	Late Winter	Spring	Summe
1	1	0	0	0
8	8	8	4	1
16	13	6	8	1
4	2	2	1	1
7	6	7	4	1
36	30	23	17	4
596	390	150	107	42
	Late Monsoon 1 1 8 16 4 7 36 596	Late Monsoon Early Winter 1 1 1 1 8 8 16 13 4 2 7 6 36 30 596 390	Late MonsoonEarly WinterLate Winter11088816136422767363023596390150	Late MonsoonEarly WinterLate WinterSpring110088841613684221767436302317596390150107

	Late Monsoon	Early Winter	Late Winter	Spring	Summer
Taxa_S	36	30	23	17	4
Individuals	596	390	150	107	42
Shannon_H	0.18	0.11	0.10	0.33	0.50
Dominance_D	2.36	2.48	2.59	1.69	0.84
Evenness_e^H/S	0.29	0.40	0.58	0.32	0.58
Margalef	5.48	4.86	4.39	3.42	0.80
Equitability_J	0.66	0.73	0.83	0.60	0.61
Fisher_alpha	8.43	7.58	7.58	5.70	1.09

5. CUMULATIVE DISTURBANCE INDEX

The CDI scores indicate Farmland=most disturbed, Neg.correlation between diversity and CDI at grassland, farmland

	Farmland	Plantation	Grassland	Total per season
Late Monsoon	8	4	6	18
Early winter	8	4	6	18
Late Winter	8	4	9	21
Spring	10	3	9	22
Summer	10	3	9	22
Total per site	44	18	39	
Spearman coefficient	-0.866	0.740	-0.866	

6. UNIOUE SPECIES

Percentage of Species types					
	Total species	Unique Species			
Farmland	28	5			
Plantation	35	7			
Grassland	39	10			

Tarucus balkanicus at grassland

DISCUSSION AND CONCLUSION

1. Species richness- higher at wild areas than impacted agricultural areas

2. Species diversity- similar in all the three sites

3. Grassland and Plantation- Similar in Species Composition

4. Unique species- Grasslands > Plantation > Farmland

5. Seasonal diversity – Monsoon > Winter > Spring > Summer

6. Disturbance impact- Increase in Fires and Construction = Decrease in Diversity

7.7 Species- Protected under WPA- Importance of the area in conservation

Hypolimnas misippus

Cepora nerissa

KEY REFERENCES

Tadwalkar, M et.al.2012 "Dispersal modes of woody species from the Northern Western Ghats, India" Tropical Ecology . 53(1): 53-67, 2012. 2. Sprih, H. 2014 "Butterfly Diversity of Indian Institute of Forest

Management, Bhopal, Madhya Pradesh, India" Hindawi Publishing Corporation.Journal of Insects.Volume 2014.

Kunte,K. 1997 "Seasonal patterns in butterfly abundance and species diversity in four tropical habitats in northern Western Ghats" J. Biosci., Vol. 22, Number 5, December 1997, pp 593-603

Basavarajappa, S., et.al. 2018. "Butterfly Species Composition And Diversity In A Protected Area Of Karnataka, India" International Journal Of Biodiversity And Conservation, Vol. 10(10), Pp. 432-443

⁵⁵ Majumdar, J., et.al. 2012. "Variation In Butterfly Diversity And Unique Species Richness Along Different Habitats In Trishna Wildlife Sanctuary, Tripura, Northeast India'' Check List 8(3): 432-436, 2012

ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude towards my guide Dr. Ankur Patwardhan.

I am very grateful to all the teaching and non-teaching staff of Annasaheb Kulkarni Biodiversity Department for their tremendous support.

I am extremely thankful to everyone who accompanied me during my field visits.

Lastly, my heartfelt thanks to all the people who contributed to my project fundraiser.

ACHIEVEMENTS

• The abstract for this project has been selected for a conference named "International Electronic Conference on Entomology" (IECE) arranged by **MDPI** from Basel, Switzerland.

• I was able to secure funding for the project through the crowdfunding site "Milaap"