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From the assumption that the slow-roll parameter ε has a Lorentzian form as a function

of the e-folds number N , a successful model of a quintessential inflation is obtained.

The form corresponds to the vacuum energy both in the inflationary and in the dark
energy epochs. The form satisfies the condition to climb from small values of ε to 1

at the end of the inflationary epoch. At the late universe, ε becomes small again and

this leads to the dark energy epoch. The observables that the models predict fits with
the latest Planck data: r ∼ 10−3, ns ≈ 0.965. Naturally, a large dimensionless factor

that exponentially amplifies the inflationary scale and exponentially suppresses the dark

energy scale appearance, producing a sort of cosmological seesaw mechanism. We find
the corresponding scalar Quintessential Inflationary potential with two flat regions —

one inflationary and one as a dark energy with slow-roll behavior.

Keywords: Inflation; dark energy; quintessence; cosmology; cosmological seesaw
mechanism.

1. Introduction

The inflationary paradigm is considered as a necessary part of the Standard Model

of cosmology, since it provides the solution to the fundamental puzzles of the old Big

Bang theory, such as the horizon, the flatness, and the monopole problems.1–9 It can

be achieved through various mechanisms, for instance through the introduction of a

scalar inflaton field.10–25 Almost 20 years after the observational evidence of cosmic

acceleration, the cause of this phenomenon, labeled as a “dark energy”, remains an
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open question which challenges the foundations of theoretical physics: why there is a

large disagreement between the vacuum expectation value of the energy–momentum

tensor which comes from quantum field theory and the observable value of dark

energy density.26–28 One way to parametrize dynamical dark energy, uses a scalar

field, the so-called quintessence model for canonical scalar fields.29–31 In such a

way that the cosmological constant gets replaced by a dark energy fluid with a

nearly constant density today.32–36 For the slow-roll approximation, the scalar field

behaves as an effective dark energy. The form of the potential is clearly unknown

and many different potentials have been studied and confronted to observations.

These two regimes of accelerated expansion are treated independently. However,

it is both tempting and economical to think that there is a unique cause responsible

for a quintessential inflation37–50 which refers to the unification of both concepts

using a single scalar field. Consistency of the scenario demands that the new degree

of freedom, namely, the scalar field, should not interfere with the thermal history

of the universe, and thereby it should be “invisible” for the entire evolution and

reappears only around the present epoch giving rise to late-time cosmic acceleration.

2. Lorentzian Ansatz

In order to formulate an ansatz for the Hubble function that treats symmetrically

both the early and late times, we use the Lorentzian function for the slow-roll

parameter:

ε(N) =
ξ

π

Γ/2

N2 + (Γ/2)2
(1)

as a function of the number of e-folds N = log(a/ai), where ai is the scale parameter

at some time (which we may choose as the initial state of the inflationary phase).

ξ is the amplitude of the Lorentzian, Γ is the width of the Lorentzian. In that way,

the ε parameter increases from the initial value to 1 at the end of inflation, then

continues to increase, peak and then decreases until it gets down to the value 1 and

this represents the beginning of a the new dark energy phase that will eventually

dominate the late evolution of the universe. The upper panel of Fig. 1 presents the

qualitative shape of this behavior.

The dominant energy condition yields another bound on the coefficients. The

equation of states w is in the range |w| ≤ 1. From the relation ε = 3
2 (w + 1), we

obtain the bound 0 ≤ ε ≤ 3. The ansatz for the vacuum energy evolution (1) is

positive always, hence the lower bound is preserved. The largest value of the ansatz

(1) is 2ξ/πΓ. From the upper bound of ε, we obtain the condition:

Γ < 2ξ/3π. (2)

In general, the calculation of the above observables demands a detailed perturbation

analysis. Nevertheless, one can obtain approximate expressions by imposing the
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Fig. 1. The upper panel shows the slow-roll parameter ε versus the number of e-folds for the

ansatz (1), in a logarithmic scale. The lower panel shows the corresponding Hubble function of
the vacuum versus the number of e-folds.

slow-roll assumptions, under which all inflationary information is encoded in the

slow-roll parameters. In particular, one first introduces51

εn+1 =
d

dN
log |εn|, (3)

2042002-3



December 8, 2020 17:9 IJMPD 2042002 page 4

D. Benisty and E. I. Guendelman

where ε0 ≡ Hi/H and n a positive integer. The slow-roll parameters read:

ε ≡ ε1 = −H
′

H
, ε2 =

H ′′

H ′
− H ′

H
,

and so on. From the first slow-roll parameter definition with the ansatz (1), we

obtain the solution:

H =

√
Λ0

3
exp

[
− ξ
π

tan−1
(

2N

Γ

)]
. (4)

where Λ0 is an integration constant. The Hubble function interpolates from the

inflationary values H−∞ to the dark energy value H+∞ that corresponds to:

H± =

√
Λ0

3
exp∓ξ/2 . (5)

The magnitude of the vacuum energy at the inflationary phase reads 10−8Mpl4,

while the magnitude of the vacuum energy at the present slowly accelerated phase

of the universe is 10−120Mpl4. From the Friedmann equations, the values of the

energy density is 3H2 in the Planck scale. Therefore, the coefficients of the model

are:

ξ ≈ 129, Λ0 = 1.7 · 10−32Mpl4. (6)

We calculate the other slow-roll parameters using (3):

ε2 = − 8N

Γ2 + 4N2
, ε3 =

1

N
− 8N

Γ2 + 4N2
. (7)

For Γ → 0, all of the slow-roll parameters with n ≥ 3 yields the value −1/N .

However, in the general case, all of the slow parameters have small values if the ε2
is small.

As usual inflation ends at a scale factor af where ε1(af ) = 1 and the slow-roll

approximation breaks down. Therefore, the end of inflation takes place when the

number of e-folds read:

Nf = ±
√

Γ

4π
(2ξ − πΓ). (8)

Note that with the condition (2), we get a definite value. In order to have an

inflationary phase, the condition 2ξ > πΓ must be satisfied. The negative value

of Nf is the final state of the inflationary phase, while the positive value of Nf
is the initial value of the slow-rolling dark energy at the late universe. Therefore,

in order to calculate the inflationary observables, we must take the minus sign of

Nf . Consequently, the initial Ni satisfies the condition: Nf − Ni = N ≈ 50 − 60,

where we impose 60 e-folds for the inflationary phase. Hence, the initial state of the

inflationary phase reads:

Ni = −
√

Γ

4π
(2ξ − πΓ)−N . (9)
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The inflationary observables are expressed as:51

r ≈ 16ε1, ns ≈ 1− 2ε1 − ε2, αs ≈ −2ε1ε2 − ε2ε3, nT ≈ −2ε1, (10)

where all quantities are calculated at Ni. Therefore, the tensor to scalar ratio and

the primordial tilt give:

r =
32Γξ

πΓ2 + 4πN2
i

, ns =
π
(
Γ2 + 4Ni(Ni + 2)

)
− 4Γξ

π (Γ2 + 4N2
i )

. (11)

For 60 e-folds and Γ = 0.1, the observables read:

r = 0.0076, ns = 0.961754. (12)

These values are in agreement with the latest 2018 Planck data:52,53

0.95 < ns < 0.97, r < 0.064. (13)

Figure 2 shows the predicted distribution of the observables.54 Figure 3 shows the

predicted distribution of the observables.54 We assume a uniform prior: N ∈ [50; 70],

ξ ∈ [100; 200], Γ ∈ [0; 1], with 107 Markov Chain Monte Carlo samples. We find the

posterior yields:

r = 0.045+0.065
−0.053, (14)

ns = 0.9624+0.0087
−0.011 , (15)

αs = −
(
33+27
−30

)
· 10−5, (16)

in a good agreement with the recent Planck values.

3. Scalar Field Dynamics

The above ansatz is of general applicability in any inflation realization, whether this

is driven by a scalar field, or it arises effectively from modified gravity, or from any

other mechanism. In order to provide a more transparent picture, let us consider a

realization of these ideas in the context of a canonical scalar field theory φ moving

in a potential V (φ). The Friedmann equations are:

H2 =
8πG

3

[
1

2
φ̇2 + V (φ)

]
, Ḣ = −4πGφ̇2, (17)

while the variation for the scalar field is

φ̈+ 3Hφ̇+ V ′(φ) = 0. (18)

Let us apply the ansatz in order to reconstruct a physical scalar-field potential that

can generate the desirable inflationary observables. From the Friedmann equation

(17) that holds in every scalar-field inflation, we extract the following solutions:

φ =

∫ N

0

√
−2

H ′

H
dN, V (φ) = HH ′ + 3H2. (19)
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Fig. 2. The predicted scalar to tensor ratio versus the primordial tilt of the model.

with 8πG = 1. From the integration of the Hubble parameter, we get:

N =
Γ

2
sinh

(√
π

ξΓ
φ

)
, V (N) = Λ0e

− 2ξ
π tan−1( 2N

Γ )
(

1− 2Γξ

3πΓ2 + 12πN2

)
.(20)

Expression (20) cannot be inversed, in order to findN(φ) and then through insertion

into (20) to extract V (φ) analytically:

V (φ) = Λ0e
− 2ξ
π tan−1(sinh x)

(
1− 2ξ

3πΓ
sech2x

)
. (21)

with x ≡
√
π/Γξφ. Figure 2 shows the scalar potential V (φ). The universe in this

picture begins with φ → ∞ with a slow-roll behavior and goes to the left-hand

side. After approaching the minimum, the universe evolves with another slow-roll

behavior that corresponds to the dark energy epoch when φ→ −∞. The asymptotic

values of the potential are:
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Fig. 3. (Color online) The corresponding scalar field potential for the Lorenzian ansatz, with

different values of Γ: 0.1 red smooth line, 1 blue dashed line.

V+∞ = Λ0e
ξ, V−∞ = Λ0e

−ξ. (22)

Note that this represents a seesaw cosmological effect, that is if Λ0 represents an

intermediate scale, we see that in order to make the inflationary scale big this forces

the present vacuum energy to be small. Λ0 represents the geometric average of the

inflationary vacuum energy and the present dark energy vacuum energies.

4. Discussion

This paper introduces a model where we start with an ansatz for the slow-roll

parameter ε for the whole history of the universe. We choose a Lorentzian form for

ε, which peaks at some point and goes to zero for the early and late universe, so these

two epochs have an accelerated phase. The magnitude of the vacuum energies at the

early and late universe obeys a seesaw mechanism, since the asymptotic values of the

potential are Λ0e
±ξ, represents a seesaw cosmological effect, where the requirement

is that one scale (the inflationary scale) to be large which pushes the dark energy

scale to be very low. Seesaw cosmological effects in modified measure theories with

spontaneously broken scale invariance have been studied in Refs. 55–57. For the

situation presented in this paper to work, we must choose Λ0 as an intermediate

scale, and indeed then we see that in order to make the inflationary scale big, this

forces the present vacuum energy to be small. Λ0 represents the geometric average

of the inflationary vacuum energy and the present dark energy vacuum energies.
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The model formulates the vacuum energies both in the inflationary epoch and

in the dark energy epoch. However, to compare the basis of the model with the

whole history of universe, we have taken into account particle creation models with

temperature, as well as radiation production.
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