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Abstract 23 
Atom-based bilinear indices and linear discriminant analysis (LDA) are used to discover novel 24 
trypanosomicidal compounds. The obtained LDA-based quantitative structure-activity 25 
relationship (QSAR) models, using non-stochastic and stochastic indices, provide accuracies 26 
of 89.02% (85.11%) and 89.60% (88.30%) of the chemicals in the training (test) sets, 27 
respectively. Later, both models were applied to the virtual screening of 18 in house 28 
synthesized compounds to find new pro-lead antitrypanosomal agents. The in vitro 29 
antitrypanosomal activity of this set against epimastigote forms of Trypanosoma cruzi is 30 
assayed. Predictions agree with experimental results to a great extent (16/18) of the chemicals. 31 
Sixteen compounds show more than 70% of epimastigote inhibition at a concentration 100 32 
µg/mL. In addition, three compounds (CRIS 112, CRIS 140 and CRIS 147) present more than 33 
70% of epimastigote inhibition at a concentration of 10 µg/mL (79.95%, 73.97% and 78.13%, 34 
respectively) with low values of cytotoxicity (19.7%, 7.44% and 20.63%, 35 
correspondingly).Taking into account all these results, we could say that these three 36 
compounds could be optimized in forthcoming works. Even though none of them resulted 37 
more active than nifurtimox, the current results constitute a step forward in the search for 38 
efficient ways to discover new lead antitrypanosomals. 39 
 40 

Keywords: Atom-based bilinear indices, Anti-epimastigote elimination, Cytotoxicity, 41 
Trypanosoma cruzi, Trypanosomicidal, virtual screening. 42 
 43 
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1. Introduction 45 

Chagas disease is an autochthonous illness that affects to 22 countries in the continental 46 

Western Hemisphere (1), caused by the protozoa Trypanosoma cruzi. The parasite is found in 47 

the vector as an epimastigote and in the human host as an intracellular amastigote (2). It is 48 

estimated about 15 million people infected with T. cruzi, almost 28 million in risk of being 49 

infected and 41 200 new cases reported each year (3). It is also estimated that up to 5.4 million 50 

people will develop chronic Chagas heart disease (4, 5), while 900 000 will develop 51 

megaesophagus and megacolon (5). Although this disease is typically related to poor and/or 52 

rural populations, recent trends in migration have brought T. cruzi infection to Latin-American 53 

cities and far beyond the borders of Latin America(6, 7).  54 

Human infection is primarily transmitted by domestic and sylvatic insects of the subfamily 55 

Triatominae (Hemiptera, Reduviidae), the kissing bug, whose habitat in the Americas ranges 56 

from the US and Mexico in the North to Argentina and Chile in the South (1, 8). Vectorial 57 

transmission of T. cruzi occurs only in endemic countries in the Western Hemisphere. The 58 

haematophagous triatomine deposits containing the parasite are excreted on the host while 59 

taking a blood meal; inoculation of the parasite into the bite wound, conjunctivae or mucus 60 

membranes can result in T. cruzi infection. Recently, oral transmission has been reported in 61 

several outbreaks (9). T. cruzi infection may be also transmitted to humans congenitally, by 62 

blood transfusion and organ transplant in non-endemic countries as well as in Latin America 63 

(1, 8). The acute phase of Chagas’ disease lasts 6–8 weeks; some patients have fever, 64 

lymphadenopathy, splenomegaly and/or oedema, but most cases are asymptomatic or 65 

oligosymptomatic. Rarely, patients may develop severe disease, with myocarditis or 66 

encephalomyelitis; but without treatment, around 5–10% of these patients die (7, 10). When 67 

the acute phase ends, T. cruzi infection passes into a clinically silent chronic phase designated 68 

the indeterminate form (10). Infected individuals may remain asymptomatic for life. However, 69 

over a period of ten to thirty years, 20–35% of patients develop symptomatic chronic Chagas’ 70 

disease, characterized by cardiac and/or gastrointestinal disorders. The gravest complications 71 

include high-grade conduction blocks, ventricular arrhythmias, ventricular aneurysm, 72 

thrombo-embolic complications, heart failure, and sudden death. Optimum management may 73 

require expensive procedures, such as subspecialist examinations, pacemakers, defibrillators, 74 



and even heart transplant. A smaller proportion of patients develop digestive system disease, 75 

especially megaesophagus or megacolon (7). 76 

On the other hand, the chemotherapy of this parasitic infection remains undeveloped. The 77 

treatment is based on old and quite unspecific drugs that have significant activity only in the 78 

acute phase of the disease and, when associated with long-term treatments, give rise to severe 79 

side effects (11). The currently available chemotherapy for Chagas disease is based on two 80 

agents introduced in the market in the 1970s: nifurtimox (a nitrofuran derivative) and 81 

benznidazole, (a nitroimidazole derivative). They show limited efficacy to the diseases’ acute 82 

phase and only against some pathogen strains; they are also associated to severe side effects, 83 

including cardiac and/or renal toxicity (12). Their efficacy also varies according to 84 

geographical areas, mainly because of differences in drug susceptibility of different T. cruzi 85 

strains (13). Benznidazole efficacy and tolerance are inversely related to the age of the patient, 86 

while its side effects are more frequent in elderly patients (14). Furthermore, medication is 87 

expensive, for example, nifurtimox regimen requiring 10 mg/kg in three or four doses per day 88 

over a 60- to 120-day period (15). Once the disease has progressed to later stages, no 89 

medication has consistently proved to be effective (12). 90 

As mentioned above it is necessary to search for new effective and less toxic 91 

chemotherapeutic and chemo-prophylactic agents against T. cruzi. However, the great costs 92 

associated with the development of new drugs and the small economic size of the market for 93 

antiprotozoals, make this development slow (16). In this context, our research group has 94 

recently developed a novel scheme to generate molecular fingerprints based on the application 95 

of discrete mathematics and linear algebra theory. The approach [known as TOMOCOMD 96 

acronym of TOpological MOlecular COMputer Design] (17-19) allows us to perform rational 97 

in silico molecular design (selection/identification) and Quantitative Structure-98 

Activity/Property Relationship (QSAR/ QSPR) studies. In fact, this scheme has been 99 

successfully applied to the prediction of several physical, physicochemical, chemical, 100 

pharmacokinetical, toxicological as well as biological properties (20-25).  Furthermore, these 101 

molecular descriptors (MDs) have been extended to consider three-dimensional (3D) features 102 

of small/medium-sized molecules based on the trigonometric-3D-chirality-correction factor 103 

approach (26-31).  104 



In the present report, atom-based non-stochastic and stochastic bilinear indices are used to 105 

find classification models that allow the discrimination of antitrypanosomal compounds. This 106 

approach permits the rational identification of those candidates to be evaluated, which have 107 

the highest probabilities of being active ones. Following this idea, 18 already-synthesized 108 

compounds were then in silico evaluated and, after that, in vitro assayed against epimastigote 109 

forms of Trypanosoma cruzi. Cytotoxic studies were also conducted, as a selection criterion of 110 

compounds with good activity vs, lowest toxicity. 111 

 112 

2. Results and Discussion 113 

2.1. Development and validation of the discriminant functions. 114 

The linear discriminant analysis (LDA) has become an important tool for the prediction of 115 

chemical properties. Because of the simplicity of this method, many useful discriminant 116 

models have been developed and presented by different authors in the literature (21, 23, 32-117 

35). It was the technique used in the generation of a discriminant function in the present work. 118 

Also, the principle of maximal parsimony (Occam’s razor) was taken into account as the 119 

strategy for model selection (36). The general dataset was randomly divided into two subsets, 120 

training and test set (which have 346 and 94 compounds, respectively), both of them 121 

containing active and inactive compounds. The best models obtained using atom-based non-122 

stochastic and stochastic bilinear indices as molecular descriptors, together with their 123 

statistical parameters are given below, respectively: 124 

Class = –5.103 -2.9x10-8 MKb 
13L( Ew ) +6.62x10-9 MKb14L( Ew ) +1.52x10-5 MPb8L

H( Ew )  125 

              –8.70x10-6 MPb9L
H ( Ew ) +5.30x10-7 MVb9L

H( Ew ) –3.93x10-3 VKb1L
H( Ew ) 126 

             +7.93x10-6 VPb6( w )                                                                                         (1)               127 

N = 346                λ = 0.42                  QTotal = 89.02 %          MCC = 0.76 128 

D2 = 5.975            F = 65.73                p < 0.001 129 

Class = –4.531+9x10-2 VPsb0
H( w ) +12.29x10-2 VKsb1

H( w ) –4.22x10-2 VKsb7( w ) 130 

              –4.69x10-2 VKsb1L
H( Ew ) –1.63 PKsb9

H( w ) +9.09x10-1 PKsb6L
H( Ew ) 131 

              –2.47x10-2 MPsb2L
H( Ew )                                                                                  (2) 132 

N = 346                λ = 0.45                  QTotal = 89.60 %          MCC = 0.77 133 

D2 = 5.357            F = 58.95                p < 0.001 134 



where, Class refers to antitrypanosomal activity, N is the number of compounds, λ is the 135 

Wilks’ statistic, QTotal is the accuracy of the model for the training set, MCC is the Matthews’ 136 

correlation coefficient, D2 is the square Mahalanobis distance, F is the Fisher ratio and p-value 137 

is its significance level. 138 

Both equations appeared statistically significant at p<0.001. The best non-stochastic model 139 

(Eq. 1), which includes non-stochastic indices, present a good overall accuracy of 89.02% for 140 

the training set (see Table 1). In addition, this model showed an adequate Matthews’ 141 

correlation coefficient of 0.76; MCC quantifies the strength of the linear relation between the 142 

molecular descriptors and the classifications and, usually, it may provide a much more 143 

balanced evaluation of the prediction than, for instance, the percentages (accuracies). Together 144 

with the accuracy other parameters such as sensitivity, specificity, and false-positive rate (also 145 

known as ‘false-alarm rate’), are among the most commonly used parameters in medical 146 

statistics. While the sensitivity is the probability of correctly predicting a positive case, the 147 

specificity (also known as ‘hit rate’) is the probability that a positive prediction be correct 148 

(37). The non-stochastic model shows, for the training set, a good value of sensitivity of 149 

85.83%, a specificity value of 83.06% and a false-positive rate of only 9.29% (See Table 1). 150 

Nevertheless, the most important criterion, for the acceptance or not of a discriminant model, 151 

is based on statistics for the external prediction set, which is known as the predictive power of 152 

the model. For the test set, the non-stochastic model showed an accuracy of 85.11%, MCC of 153 

0.67, a good value of sensitivity of 91.30% and a specificity value of 63.64%, with a 16.90% 154 

of false-positive rate. 155 

Table 1. Prediction performances for LDA-based QSAR models for training and test sets. 156 
Models Matthews Corr. 

Coefficient (C) 
Accuracy 

‘QTotal’ (%) 
Specificity 

(%) 
Sensitivity 

‘hit rate’ (%) 
False positive 

 rate (%) 
Training set 

Eq. 1 0.76 89.02 83.06 85.83 9.29 
Eq. 2 0.77 89.60 82.81 88.33 9.73 

Test set 
Eq. 1 0.67 85.11 63.64 91.30 16.90 
Eq. 2 0.74 88.30 68.75 95.65 14.08 
 157 

On the other hand, the best stochastic model (Eq. 2) presents a good overall accuracy of 158 

89.60%, with a good MCC value of 0.77 for the training set. These values are slightly better 159 

than those obtained with the non-stochastic model. The achieved values for sensitivity and 160 



specificity were 88.33% and 82.81%, respectively, as well as a false-positive rate of only 161 

9.73%. For the test set the results of the stochastic model were an accuracy of 88.30%, MCC 162 

of 0.74, sensitivity of 95.65%, and specificity of 68.75%; these values are acceptable. All the 163 

values are reported in Table 1. The results of the classification for compounds in both, training 164 

and test, sets achieved with Eqs. 1 and 2 can be seen in the Supporting Information (Tables 165 

S1-S4).  166 

Therefore, the robustness of the model refers to the stability of its parameters (predictor 167 

coefficients) and, consequently, to the stability of its predictions when a perturbation is 168 

applied to the training set and the model is regenerated from the “perturbed” training set. 169 

Here, we develop the leave-group-out (LGO) and Y-scrambling procedures (3, 38) as very 170 

important tools in order to detect what is sometimes referred to as “internal predictivity” and 171 

possible chance correlation in the models obtained, respectively (For details, see section 1 of 172 

Supporting Information). First, a LGO strategy was performed and the calculation of 173 

accuracies in the new training sets and test set compounds permitted us to carry out the 174 

assessment of the models. The results of this validation process are illustrated in Figure S1 175 

(see Supporting Information). It can be observed from this plot that the models present a high 176 

stability to disturbances within the database. The results of the stochastic model were better 177 

than those obtained with the non-stochastic model. After that, the Y-scrambling test was 178 

carried out. The results of our randomization experiments are shown in Figure S2 (see 179 

Supporting Information) and indicate that, when the random group size is increased, the 180 

globally good accuracy of the model decreased gradually. This outcome indicates that the 181 

values of good overall classification are not because of chance correlation or structural 182 

redundancy in the training set. 183 

2.2 In silico and experimental identification of novel antitrypanosomals. 184 

The entire algorithm, described in the sections above, was made up with the main objective of 185 

exploring the applicability of the QSAR models, obtained with the atom-based bilinear 186 

indices, for the identification of ‘hits’ (pro-lead compounds) from large databases. Therefore, 187 

an in silico screening of novel compounds was performed, looking for the biological activity 188 

concerning this work. In order to carry out this, a pool of approximately 200 compounds 189 

available from our academic collaborators never described in the literature as 190 

antitrypanosomal agents was chosen. Later, the in silico assays were performed by using all  191 



Table 2. Compounds evaluated in the present study, their classification (∆P%) according to the obtained models, their antitrypanosomal 
activity and cytotoxicity at three different concentrations (100, 10, and 1 µg/mL) and antitrypanosomal activity of nifurtimox (reference). 

%AE (SD)d %CI(SD)e 
Compound Exp.a 

∆P 
Eq. 1b 

∆P 
Eq. 2c 100µg/mL 10µg/mL 1µg/mL 100µg/mL 10µg/mL 1µg/mL 

CRIS 105 A 94.5 97.5 72.10 ±0.28 38.20 ±2.61 14.83 ±5.16 27.58 ±1.45 0.00 ±4.35 0.00 ±2.18 
CRIS 109 A 96.0 97.3 84.21 ±0.75 56.20 ±1.39 0.00 ±2.05 49.21 ±0.60 10.88 ±1.36 11.66 ±1.70 
CRIS 110 A 96.3 97.3 82.14 ±0.72 54.15 ±0.89 8.56 ±0.47 65.85 ±1.68 33.48 ±4.61 7.14 ±2.05 
CRIS 111 A 96.2 97.8 83.80 ±1.47 41.73 ±1.25 23.94 ±1.02 42.91 ±0.47 8.68 ±0.72 0.00 ±1.64 
CRIS 112 A 96.4 97.8 87.24 ±0.29 79.95 ±2.17 15.42 ±1.34 57.99 ±4.88 19.70 ±0.85 0.00 ±1.15 
CRIS 116 A 97.9 98.5 70.84 ±2.38 53.18 ±1.88 6.98 ±4.25 24.31 ±1.52 9.71 ±1.57 7.85 ±1.30 
CRIS 119 A 98.0 98.6 73.77 ±1.66 30.71 ±0.88 19.65 ±2.57 63.22 ±1.32 25.69 ±1.32 11.22 ±2.28 
CRIS 130 A 97.9 98.6 76.45 ±2.31 46.09 ±2.53 0.00 ±2.68 50.21 ±0.82 12.60 ±1.18 0.00 ±2.14 
CRIS 131 I 99.8 99.3 35.56 ±2.35 21.71 ±1.81 4.24 ±0.82 20.54 ±1.63 27.56 ±1.45 7.14 ±1.20 
CRIS 135 A 94.6 97.6 81.13 ±2.55 35.48 ±4.16 10.69 ±1.35 35.18±1.54 11.71±1.33 0.00±0.85 
CRIS 140 A 96.1 97.3 77.46 ±2.69 73.97 ±1.79 33.25 ±1.78 64.19 ±1.10 7.44 ±1.47 0.00 ±1.97 
CRIS 141 A 96.2 97.8 75.64 ±0.80 54.38 ±0.55 8.27 ±1.05 99.46 ±0.21 99.90 ±0.07 34.66 ±1.91 
CRIS 142 A 99.8 99.0 74.82 ±1.65 22.23 ±5.23 2.51 ±1.67 31.41 ±4.48 19.24 ±1.72 5.72 ±0.65 
CRIS 143 A 99.8 99.1 80.35 ±3.25 39.01 ±2.11 7.80 ±3.28 71.14 ±3.60 23.14 ±4.10 4.67 ±0.80 
CRIS 147 A 99.8 99.1 99.29 ±0.74 78.13 ±0.78 23.44 ±2.00 37.23 ±0.79 20.63 ±2.12 6.28 ±2.62 
CRIS 148 A 99.8 98.9 82.26 ±1.32 31.77 ±0.78 12.56 ±4.04 26.79 ±2.42 26.74 ±5.06 6.71 ±1.06 
CRIS 149 A 99.8 99.0 75.00 ±2.96 48.56 ±0.87 14.34 ±1.95 41.32 ±2.76 10.10 ±1.32 0.00 ±1.93 
CRIS 153 I 99.9 99.5 20.31 ±0.56 18.75 ±0.54 21.41 ±0.52 20.63 ±1.20 20.70 ±0.56 3.50 ±1.63 

Nifurtimox A 99.98 98.39 100±1.49 85.45±2.43 38.21±2.17 11.68 0.6 0.32 
aObserved activity: A (active), I (inactive) 
bResults of the classification of compounds obtained from Model 1, ∆P% = [P(active) _ P(inactive)] · 100 
 cResults of the classification of compounds obtained from Model  2, ∆P% = [P(active) _ P(inactive)] · 100 
dAnti-epimastigotes percentage and standard deviation (SD) 
eCytotoxicity percentage and standard deviation (SD) 

 
 
 



the models developed inside this report, in order to identify bioactive chemicals that present 

trypanocidal activity. 

Here, 18 new organic compounds were selected as putative antitrypanosomal by the LDA-

based QSAR models. However, it is generally acknowledged that QSARs are valid only 

within the same domain for which they were developed. In fact, even if the models are 

developed on the same chemicals, the applicability domain (AD) for new chemicals can differ 

from model to model, depending on the specific molecular descriptors. Therefore, the leverage 

values (h) and standardized residuals related to these 18 compounds were calculated, the 

leverage values of these new compounds and were lower than the value of warning leverage 

(h* = 0.06); the corresponding leverage plot is shown in Fig. S3 (For details, see Section 2 of 

supporting information).  According to this, these chemicals lie in the applicability domain of 

the model, consequently their predictions are reliable. This proves the good valuation for the 

classification of this set of compounds as new antitrypanosomal, and so, this model can be 

used with high accuracy for the prediction of new compounds within its AD. 

After that, the in vitro assays of the previously synthesized compounds (Figure 1) were carried 

out to corroborate the in silico predictions. We proceeded to test the compounds in an 

epimastigote inhibition (in vitro) assay (39). The ΔP% values of the compounds in the dataset, 

using all the discriminant functions and the chemical structures are depicted in Table 2 and 

Figure 1, respectively. A good agreement (16/18) is observed between the experimental 

antitrypanosomal activity and theoretical predictions for this set of compounds. Sixteen 

compounds showed more than 70% of epimastigote inhibition at a concentration of 100µg/mL 

(see Table 2). Also, three compounds (CRIS 112, CRIS 140 and CRIS 147) demonstrated 

more than 70% of epimastigote inhibition at a concentration of 10µg/mL (79.95%, 73.97% 

and 78.13%, respectively). Even though none of them resulted more active than nifurtimox, 

the current results constitute a step forward in the search for efficient ways to discover new 

lead antitrypanosomals. 

After this preliminary in vitro test, the unspecific cytotoxicity was determined against 

macrophages at the concentrations that were used in the previous assay (39, 40). At this time, 

three compounds (CRIS 105, CRIS 116 and CRIS 148) that showed more than 70% of 

epimastigote inhibition, at a concentration of 100µg/mL (Table 2), also presented acceptable 

values of cytotoxicity (27.58%, 24.31% and 26.79%, respectively). The three compounds with 

more than 70% activity at a concentration of 10µg/mL (CRIS 112, CRIS 140 and CRIS 147) 

showed low values of cytotoxicity (19.7%, 7.44% and 20.63%, correspondingly). Taking into 

account all these results, we can say that some compounds of this group can be optimized in 



forthcoming works, but we consider that compound CRIS 140 is the best candidate (see Figure 

1). 

Here we would like to give a brief consideration about the possible structure-activity 

relationship for this set of compounds. According with the experimental results if we select for 

example compound CRIS140 with CRIS149 and CRIS153 we can see that the hybridization 

sp3 of the carbon which the pyridyl ring is attached seem to be better than sp2 hybridization 

for the trypanosomicidal action. Similar situation can be seen if we compare compounds 

CRIS112 and CRIS131; in both cases carbons with sp3 hybridization present more % of AE 

than those which have sp2 hybridization in the same position. 

 

N
H N

CRIS 105

N
H N

N
H

N
N
H N

N
H N

N
H

N N
H

N

N
H

N
N
H

N

N
H

N

N
N N

N

N
N

N
N

CRIS 109 CRIS 110 CRIS 111 CRIS 116

CRIS 119 CRIS 130
CRIS 141

CRIS 148

CRIS 140

CRIS 147CRIS 143CRIS 142

CRIS 135

O

N
H

N

CRIS 112

O Cl

Cl Cl

N
N

CRIS 131

O O

N

NCRIS 149

N
N

CRIS 153

Figure 1. Molecular structures of experimentally evaluated compounds. 

 

On the other hand, the same group of chemicals used in this work was recently tested against 

other protozoan parasite, Trichomonas vaginalis, and all compounds were found inactive at all 

assayed concentrations, with exception of compound CRIS 148 (41). Therefore, we can say 

that the antitrypanosomal activity, predicted and experimentally corroborated in this work, is 

quite specific for this group of compounds. However, a T. cruzi amastigote susceptibility assay 

and other tests of activity against other protozoa parasites are needed, in particular with other 

protozoa that also belong to the trypanosomatida family like Leishmania and Trypanosoma 

brucei. 

 



3. Conclusions 

The obtained models, developed using atom-based non-stochastic and stochastic bilinear 

indices, permit us to classify new “physical” or “virtual” chemicals as active or inactive ones, 

in the chemotherapy of trypanosomiasis, and they will contribute to a more rational discovery 

of new lead compounds with antitrypanosomal activity. The usage of this method permits a 

good prediction of the biological property under consideration, thus increasing the likelihood 

of an in silico discovery of new candidate lead compounds and minimizing the use of 

resources. In the present report, 16 new compounds, subjected to in silico screening, were 

recognized with antitrypanosomal activity.  Afterward, several in vitro experiments are 

performed to corroborate the reliability of the classification functions developed in this work 

and permit us to select the candidates with the best “activity against epimastigote 

forms/unspecific cytotoxicity” rate. Finally, we can say that the present algorithm constitutes a 

step forward in the search for efficient ways of discovering new antitrypanosomal compounds, 

and constitutes an example of how this rational computer-aided method can help to reduce 

cost and to increase the rate in which novel chemical entities progress through the pipeline. 

 

4. Experimental Section 

4.1. Data-set for QSAR Study 

The general data-set used in this study was the same that we utilize in previous works (24, 25) 

and it consists of 440 compounds of great structural variation, 143 of which are actives and 

297 are inactive against trypanosome. For active compounds, it is remarkable that the wide 

variability of drugs and mechanisms of action in the training and prediction sets assures 

adequate extrapolation power (For details about the data set please see Section 3 of supporting 

information).   

4.2. Computational approach 

The theory of the atom-based bilinear indices used in this study was discussed in detail in 

earlier publications (31, 35). Specifically, the CARDD (Computed-Aided Rational Drug 

Design) module implemented in the TOMOCOMD Software (42) was used in the calculation 

of atom-based non-stochastic and stochastic bilinear indices. In this study, the properties used 

to differentiate the molecular atoms are those previously proposed for the calculation of the 

DRAGON descriptors (43-45)  i.e., atomic mass (M), atomic polarizability (P), atomic 

Mullinken electronegativity (K), van der Waals atomic volume (V), plus the atomic 

electronegativity in Pauling scale (G) (46). 

The following descriptors were calculated in this work: 



(I) the kth non-stochastic total bilinear indices, not considering and considering H atoms in the 

molecular pseudograph (G) [bk( x , y ) and bk
H( x , y ), respectively]. 

(II) the kth non-stochastic local (atomic group = heteroatoms: S, N, O) bilinear indices, not 

considering and considering H atoms in the molecular pseudograph (G) [bkL( x E, y E) and 

bkL
H( x E, y E), correspondingly]. These local descriptors denote putative H-bonding 

acceptors; in addition, they represent charge as well as dipole moment. 

(III) the kth non-stochastic local (atomic group = H-atoms bonding to heteroatoms: S, N, O) 

bilinear indices, considering H atoms in the molecular pseudograph (G) [bkL
H( x E-H, y E-

H)]. These local descriptors denote putative H-bonding donors.  

The kth stochastic total [sbk( x , y ) and sbk
H( x , y )] and local [sbkL( x E, y E), sbkL

H( x E, y E) and 
sbkL

H( x E-H, y E-H)] bilinear indices were also computed.  

4.3. Chemometric method 

4.3.1 Linear discriminant analysis  

The LDA was performed with software package STATISTICA (47). Forward stepwise was 

fixed as the strategy for variable selection. The quality of the models was determined by 

examining Wilk´s λ parameter (U-statistic), square Mahalanobis distance (D2), Fisher ratio (F) 

and the corresponding p-level [p(F)], as well as the percentage in training and test sets of 

global good classification, Matthews’ correlation coefficient, sensitivity, specificity, negative 

predictive value (sensitivity of the negative category) and false positive rate (false alarm rate) 

(37). Models with a proportion between the number of cases and variables in the equation 

lower than 4 were rejected. 

Validation external process is necessary to ensure the quality and predictive power of the 

QSAR models to predict the activity of compounds that were not used for model development. 

In this study, the original data are divided into two series, the training and test sets. The 

training set is used to build the QSAR models, and these discriminant functions (DFs) are used 

to predict the activities of compounds in the test set. The predictivity of a model is estimated 

by comparing the predicted and observed classes of a sufficiently large and representative test 

of compounds. 

4.4 Biological assay: Determination of ‘in vitro’ tripanosomicidals activity and cytotoxicity 

4.4.1 Parasites and culture procedure 

The strain-Y of T. cruzi (48) was originally isolated from an acute human case coming from 

Marília (São Paulo, Brazil) in 1950. Epimastigotes were grown at 28º C in liver infusion 



tryptose (LIT) broth with 10% fetal bovine serum (FBS), penicillin and streptomycin as 

previously described (49). 

 

4.4.2 Epimastigotes susceptibility assay 

The activity was evaluated with resazurin by a colorimetric method previously described (39). 

The screening assay was performed in 96-well microplates with cultures in LIT with 10% 

FBS, which had not reached the stationary phase. Epimastigotes were seeded at 3 x 106 per 

milliliter in culture tubes. Following a 24 h incubation to allow homogeneous growth, 200 µL 

volumes were seeded in the plates in the presence of serial dilutions of reference drugs 

(concentration range as above) at 28º C for 48 hours, at which time 20 µL of resazurin solution 

3mM was added and returned to the incubator for another 5h. The solution of resazurin was 

prepared in 1% phosphate buffer solution (PBS) pH 7, and filter-sterilized before use. Growth 

controls were also included. The oxidation-reduction was quantified at 490 and 595 nm. Each 

concentration was assayed in triplicate. In order to avoid drawbacks, medium and drug 

controls were used in each test. The anti-epimastigotes percentage (%AE) was calculated as 

follows: 

%AE = [(ALW–(AHW×RO) test well)/(ALW–(AHW×RO) positive growth control)] ×100 

where, ALW and AHW represents the absorbances at the lower and the higher wavelength 

respectively (milieu was subtracted) and RO represents the correction factor (RO=ALW/AHW 

for resazurin in the milieu). 

4.4.3 Cell culture 

The cell lines used were National Collection of Type Cultures (NCTC) clone 929 and murine 

J774 macrophages. The NCTC clone 929 cells were grown in Minimal Essential Medium 

(Sigma) and J774 macrophages were grown in RPMI 1640 medium (Sigma). Both media were 

supplemented with 10% heat-inactivated FBS (30 minutes at 56ºC), penicillin G (100 U/mL) 

and streptomycin (100 µg/mL). For the experiments, cells in the pre-confluence phase were 

harvested with trypsin. Cell cultures were maintained at 37ºC in a humidified 5% CO2 

atmosphere. 

4.4.4 Cytotoxicity assays 

The procedure for cell viability measurement was evaluated with resazurin by a colorimetric 

method described previously (39, 40). The macrophages J774 were seeded (5 ×104 cells/well) 

in 96-well flat-bottom microplates with 100 µL of RPMI 1640 medium. The cells were 

allowed to attach for 24 h at 37ºC, 5% CO2 and the medium was replaced by different 

concentrations of the drugs in 200 µL of medium, and exposed for another 24 h. Growth 



controls were also included. Afterwards, a volume 20 µL the 2mM resazurin solution was 

added and plates were returned to incubator for another 3h to evaluate cell viability. The 

reduction of resazurin was determined by dual wavelength absorbance measurement at 490 nm 

and 595 nm. Background was subtracted. Each concentration was assayed in triplicate. 

Medium and drug controls were used as blanks in each test.  
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