Cost Comparison of Drone and Foot Based Early Bark Beetle Detection

Paczkowski, S.; Jaeger, D.

1 Dept. of Work Science and Engineering, Faculty of Forest Science and Forest Ecology, Georg-August-University Göttingen
Structure of the presentation

Introduction
Methods: Analyzed Parameters
Methods: Calculation
Results
Conclusions
Introduction

Serious damage by bark beetles:

Canada: net present value loss (average per year) of 1,274 million dollar between 2009 and 2054 \(^1\)

USA: annual loss of 1.5 million dollar between 1971 and 2000 \(^2\)

Germany: Increasing losses due to insect calamities from 2015 to 2019 (see inset: timber cutting due to damage in German forests) \(^3\)

-> Need for early assessment of bark beetle damage to prevent timber losses due to bark beetle gradation

Introduction

Multispectral drone or satellite based methods have a low capability of early bark beetle infestation detection\(^1\)

BUT: Only early detection can prevent a beetle gradation with successive high losses of timber

Conventional early bark beetle assessment: Foot Based
- low time efficiency
- intermediate detection rate
- movement speed depends on the terrain

Alternative assessment: Electronic Nose Drone Based\(^2\)
- high time efficiency
- high detection rate
- movement speed independent on the terrain

\(^1\)Immitzer et al. 2019, AFZ-Der Wald 17, p. 20–23; \(^2\)Paczkowski et al. 2021, Forests 12(2), 228 https://doi.org/10.3390/f12020228
Methods: Analyzed Parameters

Foot based assessment:

- Terrain slope (-50° to 50°) and relative share of this slope (0% - 100%) per ha
 - It was assumed that
 - The forester prefers the isohypsis in order to minimize walking efforts
 - Movement speed down the slope is higher than movement speed up the slope
 - The forester chooses either 10 m or 20 m distance between walking lanes

- Forest floor characteristics
 - A correction factor for decreasing movement speed was used (0.75; 0.5; 0.25) to simulate increasing ground obstacles, e.g. vegetation, gravel, soil erosion
 - Three literature sources on walking speeds (1.5 m × s⁻¹; 1.23 m × s⁻¹; 0.99 m × s⁻¹) were used to calculate the mean walking speed for ideal hiking road conditions

- The labor costs for a forester were calculated to be 47.6 € per hour

Knoblauch et al. 1996, Transportation Research Record; Langmuir et al. 1984, Scottish Sport Council; Renner 2019, RennerXXL
Methods: Analyzed Parameters

Drone based assessment:

- The flight path of the drone was modelled to be in 1 m distance to the tree crowns

- The length of the flight path per ha depended on
 - Distance between flight lanes
 - Slope of the stand
 - Conifer tree crown diameter (homogeneous age structure was assumed)

- The cost of the flight per ha depended on
 - Flight speed (1 m × s⁻¹ – 4.5 m × s⁻¹)
 - The labor costs for an engineer were calculated to be 70 € per hour
Methods: Calculation

All calculations were performed considering:

- Comparison between different area sizes (1 – 100 ha)
- The influence of the slope
- The cost per ha to compare both assessment methods
- The additional cost for accessing the forest location:
 - Forester:
 - Distance to forest location 10 km with 7 km road, 3 km forest road
 - Engineer:
 - Distance to forest location 100 km with 97 km road, 3 km forest road
 - Preparation (UAV activation and check) and postprocessing (UAV check, heat map calculation for early bark beetle infestation localization)
 - Battery exchange for large areas, depending on the flight speed
 - Accommodation and additional travel costs when assessing larger areas
Results:

Foot based assessment with 10 m walking lane distance:

Terrain Correction Factor 0.75

Terrain Correction Factor 0.25
Results:

Drone based assessment

Crowndiameter 4 m
Flight lane distance 4 m

Crowndiameter 4 m
Flight speed 2.5 m/s - 1
Results:

Comparison between foot based and drone based assessment,
Optimum for foot based assessment:

<table>
<thead>
<tr>
<th>Slope [Grad]</th>
<th>Area [ha]</th>
<th>Costs [€]</th>
</tr>
</thead>
<tbody>
<tr>
<td>-30</td>
<td>3 29 145 290 435 580 870 1.160 1.450 1.740 2.030 2.320 2.610 2.900</td>
<td></td>
</tr>
<tr>
<td>-25</td>
<td>4 23 113 226 339 453 679 905 1.131 1.358 1.584 1.810 2.036 2.263</td>
<td></td>
</tr>
<tr>
<td>-20</td>
<td>5 19 93 186 279 372 558 744 929 1.115 1.301 1.487 1.673 1.859</td>
<td></td>
</tr>
<tr>
<td>-15</td>
<td>6 16 80 159 238 318 477 636 795 954 1.113 1.272 1.431 1.590</td>
<td></td>
</tr>
<tr>
<td>-10</td>
<td>7 14 70 141 211 281 422 562 703 843 984 1.124 1.265 1.405</td>
<td></td>
</tr>
<tr>
<td>-5</td>
<td>8 13 64 128 191 255 383 510 638 765 893 1.020 1.148 1.275</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>9 13 65 129 194 258 387 516 646 775 904 1.033 1.162 1.291</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10 14 71 143 214 285 427 570 712 855 997 1.140 1.282 1.425</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11 16 80 161 241 322 483 644 805 966 1.127 1.288 1.449 1.610</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>12 19 94 187 281 375 562 749 937 1.124 1.311 1.499 1.686 1.873</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>13 23 113 225 339 451 676 901 1.127 1.352 1.577 1.802 2.028 2.253</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>14 28 142 284 426 568 852 1.136 1.420 1.704 1.988 2.272 2.555 2.839</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>15 37 186 373 559 746 1.119 1.491 1.864 2.237 2.610 2.983 3.356 3.729</td>
<td></td>
</tr>
</tbody>
</table>

Foot based assessment:
- $1.05 \text{ m} \times \text{s}^{-1}$ walking speed, 10 m distance between walking lanes

Drone based assessment:
- 4 m distance between flight lanes, flight speed $2.5 \text{ m} \times \text{s}^{-1}$

Green: foot based assessment has lower costs

Orange: Drone based assessment has lower costs
Results:

Comparison between foot based and drone based assessment,

Optimum for drone based assessment:

<table>
<thead>
<tr>
<th>Slope [Grad]</th>
<th>Area [ha]</th>
<th>Costs [€]</th>
</tr>
</thead>
<tbody>
<tr>
<td>-50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Foot based assessment:

- **0.35 m × s⁻¹** walking speed, 10 m distance between walking lanes
- **Yellow:** foot based assessment has lower costs

Drone based assessment:

- **8 m distance between flight lanes**, flight speed **2.5 m × s⁻¹**
- **Blue:** Drone based assessment has lower costs
Conclusions

- Small areas are more likely to be assessed by the conventional foot based method
- The rougher the terrain and the steeper the slope, the more likely is the assessment by the drone based method
- Both methods are hard to compare, because the detection success rate of both methods has not been determined, yet
 - The detection success rate depends on:
 - Foot based:
 - Distance between walking lanes
 - Individual factors, e.g. personal fitness, eye-sight, experience
 - Drone based:
 - Flight speed
 - All factors influencing the emission of terpenes, e.g. temperature, wind, infestation intensity
Conclusions

- The decrease of the walking speed during the foot based assessment of large areas, depending on the personal fitness of the forester, was not included in the calculation model
 - With increasing area the decrease of the walking speed can increase the costs
- The investment costs of the drone equipment was not included in the cost calculation
Thank you very much for your attention!