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Abstract: Automatic forest timber volume (FTV) estimation is crucial for carbon and water cycle1

prediction, assessing climate change, forest resources management, and ecosystem analysis. In2

recent years, various researches focused on this problem utilizing high-resolution light detection and3

ranging (LiDAR) data. However, this type of data requires unmanned autonomous vehicles (UAVs)4

to be collected. In practical application, it leads to high data collection costs. This paper considers5

computer vision approaches that estimate FTV using only freely available satellite images (Sentinel-26

with 10 meters per pixel spatial resolution). Therefore, the satellite-based approach needs neither7

additional hardware nor human resources for data collection. It makes the method scalable and8

allows application in hard-to-reach regions. We implemented and compared the classical machine9

learning approaches and deep convolutional neural networks (CNNs) for the FTV estimation task.10

For model training and evaluation, field-based measurements from the Russian boreal forest were11

used with a total area of about 200.000 hectares. The result shows the high potential of computer12

vision methods for robust forest resources assessment.13

Keywords: Machine learning; remote sensing; forest timber volume; regression task; boreal forests.14

1. Introduction15

Forest management regulations of different countries have different requirements to the forest16

inventory data, because of diversity of tree species, climate conditions, soil fertility and so on [1,2].17

That leads to differences in approaches and in the detalization of the resulted information about forest18

structure.19

Scalable and accurate methods of estimation main forestry parameters such as dominant forest20

species [3], timber volume [4] and basal area is an important problem for the management of vast21

territories covered by hard-to-reach forests.22

A common methods for forest inventory are based on field measurements, LiDAR data and high23

resolution satellite imagery [5–9]. The most accurate of them also use field data accomplished by local24

volume tables to model tree heights and volume for each species separately [7].25

This study examines different machine learning approaches to estimate mean timber volume26

using satellite data and supplementary materials. We consider alternative approaches that do not27

require extra field measurements. For machine learning models training, ground-based data is used.28

We conduct experiments for Russian boreal forests with a total area of 200.000 hectares.29
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2. Materials and methods30

2.1. Study site31

Figure 1. Region of interest. Green polygon is the training area, orange polygon is validation area, red
polygon is test area.

The study is conducted for the Arkhangelsk region of northern European Russia, middle boreal32

zone (Figure 1). The coordinates are between 45◦16′ and 45◦89′ longitude and between 61◦31′ and33

61◦57′ latitude. The total study area is about 200.000 hectares. The region has a humid climate and34

high cloud coverage during a year. The region’s topography is flat, with a height difference between35

170 and 215 m above sea level [10]. The region is covered by conifer and deciduous species: spruce,36

aspen, and birch.37

2.2. Reference data38

Machine learning algorithms and especially deep learning neural networks require a large39

amount of reference data to show good generalization and become stable for integrating into applied40

solutions. For this purpose we leverage the ideas of surrogate modelling [11] and combining real41

world measurements with synthetically generated data [12,13], when obtaining precise reference data42

is very resource-intensive and time consuming. Etalon data with the timber volume is provided in a43

form of a raster grid with the 16 ∗ 16 meters cells. Each cell stores five forestry characteristics modelled44

by using field sample plots, ALS data and SPOT 5 satellite images: total mean volume (V, m3/ha),45

basal area (G, m2/ha), mean tree diameter (D, cm), mean tree height (H, m) and mean age (A, years).46

Detailed description of the technology used to model V, G, D, H, A is presented in the work [7]. In our47

study we use only total mean volume (Figure 2) as an target forestry parameter to be predicted only by48

the remote sensing data described in the Section 2.3.49

2.3. Satellite data and supplementary material50

Sentinel-2 image data for this study was acquired in L1C format from EarthExplorer USGS [14].51

Image IDs and acquisition dates are presented in Table 1. The Sen2Cor package [15] was used52
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Table 1. Sentinel images. Date format is: month, day, year.

Image ID Date
0 L2A_T38VNP_A005695_20160725T082012 07.25.16
1 L2A_T38VNP_A007297_20180730T081559 07.30.18
2 L2A_T38VNP_A015748_20180628T082602 06.28.18

for atmospheric correction. Irrelevant pixels were excluded for further study using cloud and53

shadow maps. Pixel values in L2A format were mapped to the interval [0, 1] through division by54

10000 and clipping to 0 and 1. We used spectral bands with a spatial resolution of 10 m per pixel55

(B02, B03, B04, B08 bands). Bands with 20 m per pixel spatial resolution (B05, B06, B07, B11, B12, B8A56

bands) were adjusted to 10 m by nearest-neighbor interpolation.57

Figure 2. Volume distribution.

As it is mentioned in the Section 3 to increase the accuracy of forestry parameters estimation, in58

particularly timber volume modelling, information about heights of trees should be involved. The59

information about the heights of vegetation, in particular for the forest inventorization problem, could60

be accurately measured by LiDAR data captured from UAVs. The Canopy Height Model (CHM) is the61

most common raster representation of vegetation heights based on LiDAR. We use CHM artificially62

generated from the pansharped WorldView-3 satellite image with 0.6m resolution. The algorithms63

for CHM generation are provided by the geoanalytical platform Mapflow (https://mapflow.ai/).64

Generated CHM is downsampled to match the spatial resolution of Sentinel-2 satellite imagery.65

Having the spatial resolution of input images at 10 meters it is not necessary to use expensive LiDAR66

data, if the accuracy of the artificial height map doesn’t differ a lot from the one obtained from LiDAR.67

Calculations show that the mean absolute error between the artificially generated CHM and extracted68

from LiDAR data is about 2 meters at 10 meters spatial resolution. Visual comparison of the height69

maps generated from WorldView-3 image and extracted from LiDAR data is presented on Figure 3.70

2.4. Timber stock prediction71

For timber stock estimation we used two machine learning algorithms: random forest72

regression (RF) [16] and gradient boosting regression (GB) [17]. Random forest operates by training73

many independent weak tree-based algorithms and averaging their results. Gradient boosting74

constructs new trees that consider the average of the previous trees.75

Machine learning methods are trained on pixel data that includes different channels (Table 3).76

Baseline refers to ten spectral bands. LiDAR_mode is spectral bands data with light detection and77

ranging (LiDAR) data. DEM_mode is spectral bands data with DEM data. LiDAR_plus_DEM is spectral78

bands data with LiDAR and DEM data. Artificial_height is spectral bands data with approximation79

https://mapflow.ai/
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(a) LiDAR- based (b) artificially generated from WV-3 satellite image
Figure 3. Example of CHM rasters with 10m spatial resolution obtained from different sources.

Table 2. Experiments with different input data.

Experiment Multispectral LiDAR DEM Generated
height

Baseline ! % % %

LiDAR_mode ! ! % %

DEM_mode ! % ! %

LiDAR_plus_DEM ! ! ! %

Artificial_height ! % % !

Artificial_height_DEM ! % ! !

of LiDAR data. Artificial_height_DEM is spectral bands data with approximation of LiDAR data and80

DEM data.81

For the forest timber volume estimation, we also implement a CNN model. Deep neural networks82

have been widely used for image processing and analysis tasks when spatial characteristics are essential.83

As the input, it use combination of spectral bands. The model is trained to predict the timber volume84

values by minimizing a loss function. We use U-Net [18] architecture that has shown significant results85

in various computer vision tasks. ResNet-34 [19] is used as the backbone. The optimizer is Adam [20].86

As the loss function, we use RMSE.87

To enlarge the dataset size during CNN training, we use geometrical augmentation: random88

rotation and flipping.89

To assess the prediction quality, we considered Mean Absolute Error (MAE) and Root Mean90

Square Error (RMSE, Equation 1). It is a commonly used metrics for regression tasks.91

MAE =
∑n

i=1 |yi − xi|
n

, RMSE =

√
∑n

i=1(yi − xi)2

n
(1)

where yi is the predicted value, xi is the true value, n is the number of observations (pixels).92

3. Results and discussion93

Results obtained by different models are presented in Table 3. Baseline models using just spectral94

data show lower results than models leveraging supplementary materials.95

Examples of models predictions are shown in Figure 4. The best results were achieved by the96

gradient boosting algorithm. CNN model does not outperform this result. As one can see, LiDAR97

data is very helpful at volume estimation. As our results show, artificially generated height data can98



Version July 9, 2021 submitted to Journal Not Specified 5 of 7

Table 3. Experiments with different input data.

RF mae RF rmse GB mae GB rmse U-Net mae U-Net rmse
Baseline 62.6 84.5 62.3 83.7 63.2 85.6
LiDAR_mode 55.8 77.7 55.3 77.2 56.7 78.2
DEM_mode 66.1 87.9 65.7 87.6 65.8 87.2
LiDAR_plus_DEM 54.6 76.2 53.9 75.8 55.4 78.2
Artificial_height 56.3 78.2 56.1 78 55.9 77.8
Artificial_height_DEM 55.7 77.6 55.1 77 55.8 78.2

Figure 4. CNN model predictions (with artificial generated height).

efficiently substitute LiDAR data. That allows obtaining high-quality predictions utilizing only satellite99

data which is beneficial because airborne data is difficult and costly to obtain.100

For further CNN performance improvement, we are going to use object-based [21] and101

multispectral image augmentation approaches [22]. These techniques show promising results on102

other remote sensing tasks.103

4. Conclusions104

Timber stock is a vital parameter for forest management and environmental studies. Remote105

sensing aims to provide high-quality data for large areas that can be leveraged for automatic timber106

stock evaluation. This study focuses on different machine learning approaches to process satellite data107

and predict timber stock. We also examine supplementary materials such as freely available for boreal108

regions digital elevation model and artificially generated landcover height map. This data allows us to109

improve model performance comparing with only multispectral data. Experiments show promising110

results for satellite-based timber stock evaluation.111
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