

Universidade do Minho

CENTRO DE CIÊNCIA E TECNOLOGIA TÊXTIL

www.2c2t.uminho.pt

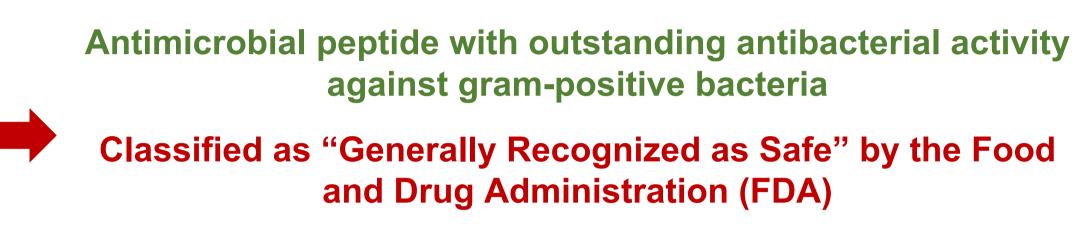
In vitro analysis of Nisin Z-loaded biodegradable wetspun fibers: controlled release for the inhibition of Staphylococcus aureus

Natália C. Homem*, Tânia D. Tavares, Catarina S. Miranda, Joana C. Antunes, Maria T. S. P. Amorim, Helena P. Felgueiras Centro de Ciência e Tecnologia Têxtil (2C2T), Universidade do Minho, Portugal *natalia.homem@2c2t.uminho.pt

Introduction

Fibers' morphology Brightfield microscopy

Table 2. Average fiber diameter $(\mu m) \pm SD$.

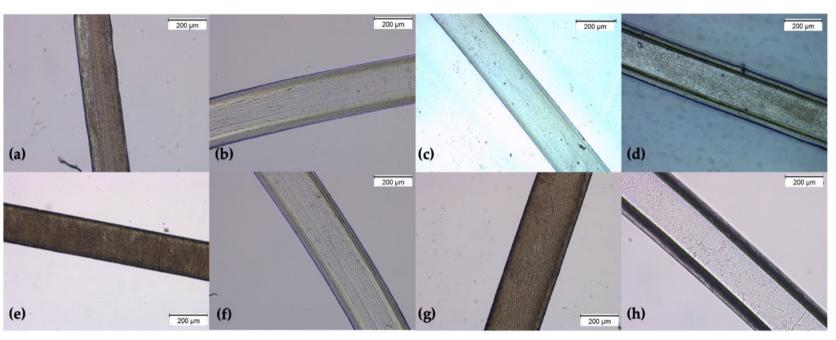


S. aureus

May cause the death of 2.4 million people in Europe, North America and Australia in the next 30 years

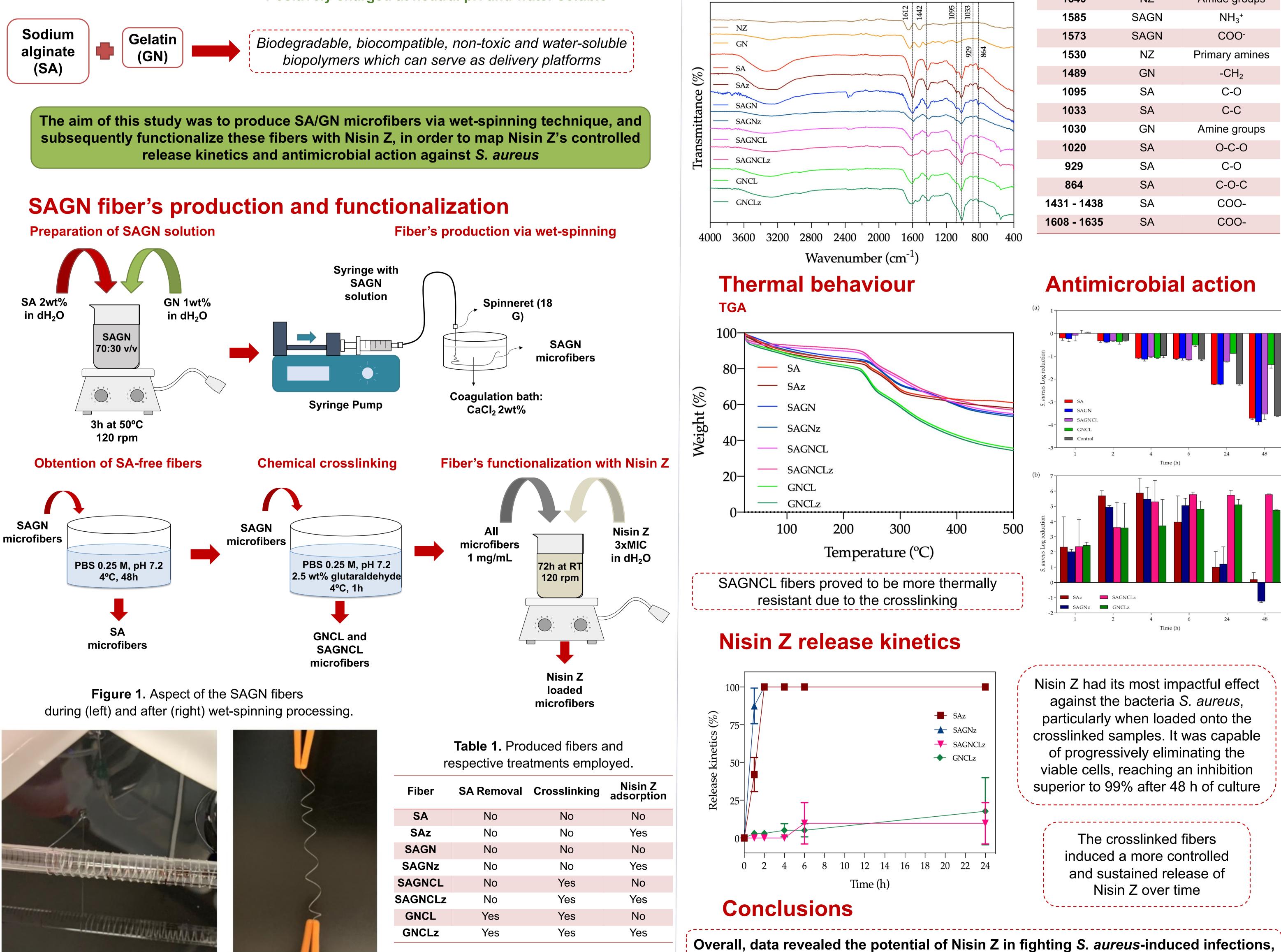
- Common opportunistic pathogen resistant to multiple antibiotics;
- Among the most prevalent RM-induced infections;
- Health public issue reported by the WHO.

Antimicrobial
peptide (AMP)
Nisin Z


Positively charged at neutral pH and water soluble

Gelatin (GN) (SA)

Biodegradable, biocompatible, non-toxic and water-soluble biopolymers which can serve as delivery platforms


subsequently functionalize these fibers with Nisin Z, in order to map Nisin Z's controlled release kinetics and antimicrobial action against S. aureus

SAGN fiber's production and functionalization **Preparation of SAGN solution**

All microfibers were determined cylindrical, homogeneous and uniform

Chemical characterization ATR-FTIR

(b) SAGN 278.5±3.2	
(c) SAGNCL 221.0±6.3	
(d) GNCL 259.2±4.8	
(e) SAz 223.5±4.0	
(f) SAGNz 281.2±3.9	
(g) SAGNCLz 219.3±7.4	
(h) GNCLz 263.4±3.6	

 Table 3. ATR-FTIR peaks detected.

Wavenumber (cm ⁻¹)	Compound/ element	Functional group assigned	
≈ 3300	All	-OH	
1658	GN	amide-I, C-O, C-N	
1640	NZ	Amide groups	
1585	SAGN	NH_3^+	
1573	SAGN	COO-	
1530	NZ	Primary amines	
1489	GN	-CH ₂	
1095	SA	C-O	
1033	SA	C-C	
1030	GN	Amine groups	
1020	SA	0-C-0	
929	SA	C-O	
864	SA	C-O-C	
1431 - 1438	SA	COO-	
1608 - 1635	SA	COO-	

Table 1. Produced fibers andrespective treatments employed.				
Fiber	SA Removal	Crosslinking	Nisin Z adsorption	
SA	No	No	No	
SAz	No	No	Yes	
SAGN	No	No	No	
SAGNz	No	No	Yes	
SAGNCL	No	Yes	No	
SAGNCLz	No	Yes	Yes	
GNCL	Yes	Yes	No	
GNCLz	Yes	Yes	Yes	

while loaded onto biodegradable crosslinked polymeric scaffolds.

Acknowledgments

This work is financed by FEDER funds through COMPETE and by national funds through FCT via the projects POCI-01-0145-FEDER-028074 and UID/CTM/00264/2020. CSM also acknowledges FCT for PhD grant (2020.08547.BD).

