

Abstract

Species of the Amaranthaceae family have become a potential group of plants for their latent beneficial properties. Their use in traditional medicine and potential biological properties can be considered as the basis to guide further investigations about their characteristics and beneficial uses. In this work, three species of the Amaranthaceae family traditional from China (Alternanthera sessilis L., Dicliptera chinensis L. and Dysphania ambrosioides L.) were proposed as an alternative source of bioactive compounds, namely phenolic compounds (Adegbola et al., 2020).

The study was aimed to extract and characterize the phenolic compounds of the three species and search for possible cytotoxic and antimicrobial activities. For this purpose, the antimicrobial activity was tested against Gram (-), Gram (+) pathogenic bacteria. The antitumor properties were assessed on *in vitro* studies to assess the inhibition of the growth of several tumor cell lines. Thus, Amaranthaceae family could be an alternative source of bioactive compounds to formulate new innovative products and incorporate them into the food, cosmetic and pharmaceutical industry.

Alternanthera sessilis

Dysphania ambrosioides

Introduction

The search of new bioactive compounds to produce drugs is a necessity promoted by the increasement of resistant bacteria, new viruses and numerous pathologies without treatment. The production of drugs produced, in 2016, 250 billion euros, data that situates the pharmacological industry in one of the most rentable markets. One of the most used sources of bioactive compounds are the natural products. Since 1981 was approved 1881 new drugs of which the 25% came from natural sources and the 41.9 % came from no synthetic sources(McKerrow, 2015) (Figure 1).

Figure I. Drugs approved since 1981 (n = 1881) classified by their source. B: biological macromolecule, N: unaltered natural product, NB: botanical drug, ND: natural product derivative, S:synthetic drug, S*: Synthetic drug (NP pharmacophore), V: vaccine, S/NM: mimic of natural producto.

One of the biggest sources of natural drugs is the secondary metabolites of the plants. Inside this big group, phenolic compounds are the most important for their bioactivities, diversity and abundance. The three species under study have been present in the diets of Asian and middle East countries. Moreover, these plants have been used in traditional medicine for treat different pathologies an illness (skin diseases, ocular diseases, wound healing, animal bites etc.). This use could be a clue of the presence of bioactive compounds. Therefore, this work consisted in the identification of the phenolic compounds present in the species and their bioactivities.

Phenolics compounds from Amaranthaceae family: extraction and biological properties

B. Nuñez-Estevez^{1,2}, T. C. Finimundy², M. Carpena¹, Paz Otero¹, M. Barral-Martinez¹, T. C. S. Pires², R. Calhelha², P. Garcia-Perez¹, J. Simal-Gandara¹, I.C.F.R. Ferreira², M.A. Prieto^{1,2},* and L. Barros²,*

¹Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain. ²Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal. *mprieto@uvigo.es; *lillian@ipb.pt

The data obtained showed interesting results in the cytotoxic (Table 1) and antimicrobial activity (Table 2). Moreover, in Table 3 is represented all the compounds identified and their concentration in the samples.

Table 1. The cytotoxic ($GI_{50} \mu g/mL$) activities.

Cell Lines	D. chinensis	A. sessilis	D. ambrosioides
Caco-2	>400	>400	188±14
MCF-7	>400	>400	245±13
NCI-H460	>400	>400	263±12
AGS	>400	>400	263±22
Vero	>400	>400	>400

Table 2. The antimicrobial activity expressed in MIC and MBC (mg/mL) of the different microorganism tested.

Dicliptera c	hinensis	Alternanthere	a sessilis	Dysphania	ambrosioides			
MIC	MBC	MIC	MBC	MIC	MBC			
Gram-negative bacteria								
20	>20	10	>20	10	>20			
>20	>20	20	>20	>20	>20			
10	>20	5	>20	5	>20			
>20	>20	>20	>20	>20	>20			
>20	>20	>20	>20	>20	>20			
Gram-positive bacteria								
10	>20	20	>20	10	>20			
10	>20	>20	>20	10	>20			
10	>20	5	>20	10	>20			
	Dicliptera c MIC 20 >20 >20 10 >20 >20 C 10 10 10	Dicliptera chinensis MIC MBC Gram-negation Gram-negation 20 >20 >20 >20 >20 >20 >20 >20 >20 >20 >20 >20 >20 >20 >20 >20 >20 >20 >20 >20 10 >20 10 >20 10 >20	Dicliptera chinensis Alternanthera MIC MBC MIC Gram-negative bacteria Dicliptera 20 >20 10 >20 >20 20 >20 >20 20 >20 >20 20 10 >20 5 >20 >20 >20 >20 >20 20 10 >20 >20 >20 >20 20 >20 >20 20 >20 >20 20 10 >20 20 10 >20 20 10 >20 20 10 >20 5	Dicliptera chinensis Alternanthera sessilis MIC MBC MIC MBC Gram-negative bacteria 20<	Dicliptera chinensis Alternanthera sessilis Dysphania MIC MBC MIC MBC MIC Gram-negative bacteria V			

Table 3 Tentative identification of the phenolic profile and their quantification (mg/g of dry extract).

Tentative identification		Samples	
	D. chinensis	A. sessilis	D. ambrosiodeis
3-p-Coumarouylquinic acid	1.2±0.1	nd	nd
p-Coumaroyl pentoside acid	nd	0.33±0.01	nd
Caffeic acid acetylhexoside	nd	0.75±0.04	nd
Sulfo-caffeic acid	1.17±0.05	nd	nd
Luteolin-6-C-glucoside-7-O-glucoside	nd	0.31±0.02	nd
Apigenin-6,8-di-C-glucoside (vicenin-2)	2.0±0.1	nd	nd
Luteolin-6-C-hexosyl-8-C-pentosyl	0.606±0.004	nd	nd
Quercetin-3-0-glucosyl-pentoside-7-0-glucuronide	nd	0.535±0.01	nd
Apigenin-6-C-xyloside-8-C-glucoside	1.3±0.1	nd	nd
Apigenin 2"-O-xyloside-8-C-hexoside	1.9±0.1	nd	nd
Dihydroxyl methyl quercetin-chalcone		0.56±0.01	nd
Apigenin 6-C-glucoside-8-C-arabinoside (Schaftoside)	2.40±0.04	nd	nd
Luteolin 2"-O-deoxyhexosyl-6-C-glucoside	nd	0.59±0.04	nd
5-Hydroxy-3,4' 7 trimethoxy-flavone	nd	nd	0.93±0.01
Luteolin-6-C-glucoside	nd	1.6±0.1	nd
Apigenin-6-C-glucoside-8-C-arabinoside	2.0±0.1	nd	nd
Eriodictyol-O-glucuronide	nd	nd	0.001±0.00002
Isorhamnetin-3-0-neohesperidoside	nd	nd	1.13±0.01
Luteolin 2"-O-deoxyhexosyl-C-pentoside	nd	0.247±0.004	nd
Kaempferol dirhamnoside-O-hexoside	nd	nd	0.98±0.05
Quercetin-3-0-rutinoside	nd	0.56±0.01	0.721±0.002
Lignan-O-coumaroylglucoside	nd	nd	0.337±0.005
Apigenin 6-C-pentosyl-8-C-hexoside	0.35±0.01	nd	nd
Quercetin-O-rhamnosyl-pentoside	nd	nd	0.888±0.001
Apigenin-6-C-glucoside	nd	0.168±0.02	nd
Apigenin-6-C-hexoside-8-C-rhamnoside	0.32±0.02	nd	nd
Chrysoeriol-8-C-(2-rhamnosyl)hexoside	nd	0.01±00.002	nd
Kaempferol-O- rhamnosyl-O-pentoside	nd	nd	0.848±0.01
Kaempferol-O-rhamnoside-O-hexoside	nd	0.77±0.02	nd
Kaempferol-O-rhamnoside-O-hexoside	nd	0.93±0.01	nd
Isorhamnetin-3-O-neohesperidoside	nd	nd	0.68±0.003
Apigenin-8-C-rhamnoside-6-C-glucoside	nd	0.23±0.02	nd
Apigenin-6-C-arabinoside-8-C-glucoside	0.28±0.02	nd	nd
Luteolin-7-0-neohesperoside	nd	0.73±0.05	nd
Luteolin-7-0-Rhamnosyl($I \rightarrow 2$)hexoside	nd	nd	0.67±0.01
Apigenin-6-C-glucoside-8-C-xyloside	0.08±0.01	nd	nd
Luteolin-O-rutinoside	nd	0.747±0.02	
Isorhamnetin-3-0-rutinoside	nd	nd	5.75±0.04
Luteolin 2"-O-deoxyosyl-6-C-(6-deoxy-pentohexoside-ulosyl)	nd	0.705±0.04	nd
Methyl-luteolin 2"-O- deoxyhexosyl-6-C-hexoside	nd	0.8±0.1	nd
Kaempferol-O- rhamnosyl-O-pentoside	nd	nd	0.587±0.002
Luteolin-8-C-(rhamnosyl)ketodeoxihexoside	nd	2.02±0.04	nd
Luteolin-8-C-(rhamnosyl)ketodeoxihexoside	nd	0.29±0.01	nd
Luteolin-O-deoxyosyl-C-deoxy-pento-hexosulosyl	nd	1.0±0.1	nd
Luteolin-O-deoxyosyl-C-deoxy-pento-hexos-ulosyl	nd	0.916±0.003	nd
Apigenin-6-C-glucoside-2"-O-rhamnoside	nd	0.42±0.01	nd
Kaempferol-O-hexose-O-gallic acid	nd	nd	0.707±0.003
Apigenin-4´-O-hexoside-D-deoxyhexoside	nd	0.90±0.01	nd
Acetylated luteolin pentosyl-rhamnoside	nd	nd	0.81±0.02
Total Phenolic compounds	13.7±0.5	6±	15.0±0.1

The antimicrobial activity is not strong enough to think in a father investigation in terms of search a possible antibiotic in this species. Nevertheless, the MIC of Dicliptera chinensis and Alternanthera sessilis are interesting to use these extracts as a possible natural food preservative that could increase the shelf life of the food thanks to the inhibition of microbial growth. Dysphania ambrosioides present a low IC_{50} against CaCo, MCF-7 and

compounds for new treatments against different cancers. Further investigations are needed to complete this study and found what are the compounds in this species that give to this species their biologic activities.

Conclusion

The results showed significant results in antimicrobial and cytotoxic activity.

NCI-H460 cell lines. This activity could be useful for find new bioactive

Protection

New anticancer treatments

References

- Adegbola, P. I., Adetutu, A., & Olaniyi, T. D. (2020). Antioxidant activity of Amaranthus species from the Amaranthaceae family – A review. South African J. Bot., 133, 111–117.
- McKerrow, J. H. (2015). Recognition of the role of Natural Products as drugs to treat neglected tropical diseases by the 2015 Nobel prize in physiology or medicine. *Nat. Prod. Rep.*, 32, 1610–1611.

Acknowledgements

The research leading to these results was funded by Xunta de Galicia supporting the Axudas Conecta Peme, the IN852A 2018/58 NeuroFood Project and the program EXCELENCIA-ED431F 2020/12; to Ibero-American Program on Science and Technology (CYTED—AQUA-CIBUS, P317RT0003) and to the Bio Based Industries Joint Undertaking (JU) under grant agreement No 888003 UP4HEALTH Project (H2020-BBI-JTI-2019); by MICINN supporting the Ramón y Cajal grant for M.A. Prieto (RYC-2017-22891); by EcoChestnut Project (Erasmus+ KA202) that supports the work of B. Nuñez-Estevez,. The JU receives support from the European Union's Horizon 2020 research and innovation program and the Bio Based Industries Consortium. The project SYSTEMIC Knowledge hub on Nutrition and Food Security, has received funding from national research funding parties in Belgium (FWO), France (INRA), Germany (BLE), Italy (MIPAAF), Latvia (IZM), Norway (RCN), Portugal (FCT), and Spain (AEI) in a joint action of JPI HDHL, JPI-OCEANS and FACCE-JPI launched in 2019 under the ERA-NET ERA-HDHL (n° 696295). Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES to the CIMO (UIDB/00690/2020). L. Barros and R. Calhelha thank the national funding by FCT, P.I., through the institutional scientific employment programcontract for their contracts.

