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 8 

Abstract: The optimum design of tall buildings, which have a proportionately huge quantity of 9 

structural elements and a variety of design code constraints, is a very computationally expensive 10 

process. In this paper, a novel strategy, with a combination of evolutionary algorithms and machine 11 

learning methods is developed for achieving the optimal design of tall buildings. The most time-12 

consuming part is the analysis of tall buildings and the control of design code constraints requiring 13 

long and frequent analyses. The main idea is to use machine learning methods for this purpose. In 14 

this study, a practical methodology for the obtaining optimal design of tall building structures, re-15 

garding the constraints imposed by typical building codes, is introduced. The optimization process 16 

will be performed by a novel evolutionary algorithm, named asymmetric genetic algorithm (AGA), 17 

and in each iteration that requires checking the constraints for a large number of different structural 18 

states, machine learning methods, including MLP, GMDH and ANFIS-PSO are facilitators. More 19 

specifically, MLP (R2 = 0.988), has performed better than GMDH (R2 = 0.961) and ANFIS-PSO (R2 = 20 

0.953). By coupling ETABS and MATLAB software, various combinations of sections for structural 21 

elements are assigned and analyzed automatically, thus creating a database for training neural net-22 

works. The applicability of the suggested procedure is described through the determination of the 23 

optimal seismic design for a 40-story framed tube building. Results designate that the present 24 

method not only supports the precision of the methodology but also remarkably diminishes the 25 

computational time and memory needed in comparison with the existing classical methods. More 26 

importantly, the optimization process time is also significantly decreased. 27 

Keywords: Practical structural optimization; Seismic design; Steel high-rise buildings; Machine 28 

Learning; Group method of data handling; Multilayer Perceptron; Hybrid ANFIS–PSO; Artificial 29 

Neural Network. 30 

 31 

1. Introduction 32 

In recent years, the demand for the optimal candidate of tall building structures has 33 

grown significantly due to financial issues. On the other hand, the dependable design of 34 

such structures brings many difficulties for an engineer because of the significant number 35 

of structural members and also the strict design constraints imposed by codes. This makes 36 

the conventional design provided by engineers not necessarily economical. This high-37 

lights the significance of optimization tools in the design process of these structures to 38 

save on construction costs [1-4]. Many of the studies in the field of tubular structures deal 39 

with the modeling of a tall building as a huge cantilever box beam [5-7]. The recent ad-40 

vances in high-performance computers made possible the precise analysis of the whole 41 

frame of the high-rise building during the optimization process. Chan et al. [8] introduced 42 

an iterative procedure based on drift, strength, and fabrication constraints. The effects of 43 

various parameters on the tube action of a reinforced concrete 55-story hotel building 44 
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were investigated by Shin et al [9]. Some researchers proposed techniques for the minimi-1 

zation of the weight of high-rise buildings subject to wind loads [10, 11]. Aldwaik and 2 

Adeli [12] conducted a review of the optimization of high-rise buildings with either tub-3 

ular or other structural systems.  4 

The above-mentioned studies mostly consider fixed patterns of loads; however, an-5 

other line of thought deals exclusively with the seismic loads which lead to more cumber-6 

some behavior in the structure. In this respect, the design codes prescribe additional strict 7 

limitations on the design of structures subject to seismic loads. During the past decades, 8 

many researchers focused on the seismic assessment of the structures [13, 14]. More spe-9 

cifically, many studies incorporated seismic considerations into optimization problems 10 

[15-17]. Moghaddam and Hajirasouliha [18] introduced an optimization technique to 11 

reach the uniform deformation of members in two-dimensional (2D) tall shear buildings 12 

subject to seismic excitation. Furthermore, Ganjavi et al. [19] investigated the best distri-13 

bution of seismic lateral loads to achieve uniform damage distribution in 2D shear build-14 

ings considering soil-structure interaction (SSI). Recently, many researchers employed op-15 

timization methods to reach the desired seismic performance objectives at various seismic 16 

hazard levels in 2D low-rise and mid-rise steel frames [20, 21] and also in 2D reinforced 17 

concrete frames [22]. Recently, with the aid of gradient-based optimization algorithms, 18 

Sarcheshmehpour et al. proposed practical methodologies for optimal seismic design of 19 

steel framed tube tall buildings based on conventional building codes [23] as well as life 20 

cycle costs [24].  21 

Notwithstanding ample researches on the optimization problems of tall buildings, 22 

using soft computing methods in optimal seismic design of tall buildings has been scarce 23 

in the literature. In the current research, a practical methodology with logical computa-24 

tional demand to achieve the most beneficial possible design within the constructional 25 

aspects, by the combination of machine learning methods and evolutionary algorithms, 26 

has been proposed. First, the optimization problem considering all constraints is de-27 

scribed. Then, by establishing the connection between MATLAB and ETABS software, a 28 

huge database, which has been used for training ANNs, is created. The methods of MLP, 29 

GMDH, and ANFIS-PSO have been investigated and the best one is selected for evaluat-30 

ing the constraints in the optimization process, which are based on the AGA algorithm. 31 

Finally, the result for a sample 40-story building has been presented. The structural anal-32 

ysis procedure for creating the database is convoyed based on the Iranian National Build-33 

ing Code (INBC) which is almost identical to ANSI/AISC 360-10 LRFD design guide [25]. 34 

2. Formulation of the optimization problem 35 

In this section, the general formulation for seismic design optimization of high-rise 36 

buildings is presented. The structural design is performed according to the conventional 37 

load and resistance factor design (LRFD) approach: 38 

Design for serviceability: Based on the Iranian Code of Practice for Seismic Resistant 39 

Design of Buildings (Standard No. 2800), the inter-story drift ratio (∆𝑖) of different 40 

stories of the buildings more than five stories high, the following constraint shall be 41 

satisfied under design seismic forces: 42 

𝐶𝑑∆𝑖≤ 0.02, (1) 

In which 𝐶𝑑 indicates the amplification factor accounting for the expected inelastic 43 

response.   44 

- Design for Strength 45 

According to the building code, the demand-capacity ratio defined in Eq. 2 shall be 46 

equal to or less than one for all load combinations, i.e., 47 

𝑅𝑢

𝜙 𝑅𝑛

≤ 1, 
(2) 

where 𝑅𝑢 represents the required strength under all LRFD load combinations and 48 

𝜙 𝑅𝑛 indicates the design strength of each structural element. 49 

(https://creativecommons.org/licens

es/by/4.0/). 
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- Strong-column/weak-beam (SC/WB): For design of Special Moment Frames (SMFs), 1 

the moment ratio shall satisfy the following constraint at each beam-to-column con-2 

nection: 3 

∑ 𝑀𝑝𝑏
∗

∑ 𝑀𝑝𝑐
∗

< 1, 
(3) 

Where ∑ 𝑀𝑝𝑏
∗  represents the total flexural strength of all beams attached to the con-4 

nection and ∑ 𝑀𝑝𝑐
∗  indicates the total flexural strength of the columns with a reduc-5 

tion for the axial force. 6 

- Practical limitations: from a practical perspective, the dimensions of columns in each 7 

story shall not be less than those in the upper stories. This constraint can be formu-8 

lated as: 9 

𝑑𝑗,𝑖
𝐶𝑜𝑙 ≥ 𝑑𝑗+1,𝑖

𝐶𝑜𝑙 ,        𝑏𝑗,𝑖
𝐶𝑜𝑙 ≥ 𝑏𝑗+1,𝑖

𝐶𝑜𝑙  ,        𝑗 = 1,2, ⋯ , 𝑁𝑆 − 1;   𝑖 = 1,2, ⋯ , 𝑁𝐶, (4) 

In Eq. 4, 𝑑𝑗,𝑖
𝐶𝑜𝑙  and 𝑏𝑗,𝑖

𝐶𝑜𝑙 represent the depth and the width of the section of the 𝑖th 10 

column in the 𝑗th story, respectively. Furthermore, 𝑁𝐶 denotes the number of columns 11 

in each story and 𝑁𝑆 is the total number of stories. 12 

In the current design optimization problem, the total weight of all beams and col-13 

umns in the 3D steel tall building indicates the objective function and all the above-men-14 

tioned inequalities behave as the optimization constraints. In addition, the section prop-15 

erties of the structural elements are considered as the design variables. The resulting non-16 

linear constrained optimization problem is attacked by two basic approaches, in the cur-17 

rent study. The first one is the metaheuristic optimization method, named AGA. The sec-18 

ond one is using machine learning techniques for determining nonlinear inequality con-19 

straints instead of time-consuming analytical approaches. For the sake of convenience, the 20 

proposed procedure of the optimal seismic design is illustrated in Figure 1. A full descrip-21 

tion of the parameters available in Figure 1 can be found in [23]. 22 

3. Structural model 23 

In this study, a 40-story framed tube building is considered as the case study to 24 

demonstrate the applicability of the proposed strategy. The 3D view and the typical floor 25 

plan of this building are shown in Figure 2. As seen, in both directions, the plan consists 26 

of nine bays, each with a length of 3 m. The gravitational columns (GC) and the corner 27 

columns (CC) of the perimeter tube have box sections. The sections of the rest of the col-28 

umns (P1C and P2C) are I-shaped sections. As shown in Figure 2, there are two types of 29 

non-corner perimeter columns: P1C columns which are only connected to the perimeter 30 

beams from both sides, and P2C columns which are also connected to the pin-ended grav-31 

itational beams (GB). The spandrel beams (PB) are fixed-ended and have a length of 3 m. 32 

Moreover, both types of gravitational beams (GB and IGB) are pin-ended with a length of 33 

9 m. As seen in Figure 2, IGB beams connect the gravitational columns together and GB 34 

beams connect the gravitational columns to the perimeter tube. 35 

The case study is a residential building in which the first four stories are considered 36 

as parking lots. The gravitational beams (GB or IGB) are divided into two groups based 37 

on their position in either residential floors or parking lots. For practical design purposes, 38 

all spandrel beams and all columns are grouped every four stories. This leads to a consid-39 

erable reduction in the number of design variables. It is worth mentioning that the index 40 

i in Figure 2 represents the group number of each structural section. 41 

The building is considered to be located in Tehran with a very high level of seismic-42 

ity. Furthermore, the soil beneath the building is consistent with Soil Type 2 of Iranian 43 

seismic code (in a depth of 30 m, the average shear wave velocity is between 375 m/s and 44 

750 m/s). A fixed base is assumed at the ground level and all supports are fixed in the 45 

structural model. 46 

By coupling ETABS [26] and MATLAB software, 7800 combinations of sections for 47 

structural elements are assigned and analyzed automatically, thus creating a database for 48 

training neural networks. 49 
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3.1. Sections decision variables 1 

In this research, the sections properties indicating the decision variables are consid-2 

ered to be continuous. The number of design variables reduces appreciably by relating all 3 

dimensions of the section to its depth through rational equations. In this study, linear 4 

equations relating the dimensions of the sections to their depths are determined according 5 

to Euro-standard sections. For more details refer to [23, 24]. 6 

. 7 

Fig. 1 The iterative procedure for the optimal structural seismic design 8 

The above-mentioned relations for I-shape sections pertinent to the non-corner col-9 

umns of the perimeter tube and beams are presented in Eq. 5 and 6, respectively. 10 

𝑏𝑓 = 𝑑, 𝑡𝑓 = 0.055𝑑 + 0.35 𝑡𝑤 = 0.015𝑑 + 0.6 (5) 

 11 

𝑏𝑓 = 0.35𝑑 + 3.3, 𝑡𝑓 = 0.026𝑑 + 0.33 𝑡𝑤 = 0.016𝑑 + 0.25 (6) 

 In Eqs. 5 and 6, 𝑑 is the section depth, 𝑏𝑓 denotes the flange width, 𝑡𝑓 is the flange 12 

thickness, and 𝑡𝑤 represents the web thickness. 13 
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As mentioned before, all the corner and gravitational columns have box shape sec-1 

tions. The equation relating the thickness (t) of the box section to its depth (d) is given as: 2 

𝑡 = 0.06𝑑 (7) 

 3 
Fig. 2 The 3D and plan view of the 40-story framed tube building 4 

4. Machine learning techniques for constraint evaluation 5 

Recently, machine learning has become very popular in engineering application [27, 6 

28]. In this study, three non-linear machine learning models, namely multiplayer percep-7 

tron (MLP) [29], group method of data handling (GMDH) [30], and combining adaptive-8 

network-based fuzzy inference system and particle swarm optimization (ANFIS–PSO)[31] 9 

were employed to estimate structural constraints. These methods are examined and the 10 

best one is selected in optimization process as the function of constraint evaluation. For 11 

training ANNs, 7800 models were created. For instance, the effect of dataset size for esti-12 

mation of one of constraints, design ratio of CC1, by MLP method, has been shown in 13 

Figure 3. As shown in this figure, the number of 6000 is sufficient for dataset size. There-14 

fore, creating 7800 model is appropriate. By trying several different models for neural net-15 

works, their final structures are presented in Table 1.  16 

 17 
Fig. 3 The effect of dataset size of the performace of machine learning (MLP) method 18 

 19 

In Figure 4, the performances of the three selected ML tools are compared. It can be 20 

seen that MLP is more accurate than GMDH and ANFIS-PSO in calculating the constraints 21 

and catching the structural response. Output provided by MLP is shown to be much less 22 

scattered than the others, and the linear interpolation of all the pairs of results is well 23 
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aligned with the (perfect fit) bisector of the quadrant. Therefore, for optimization process, 1 

MLP method is selected.  2 

 3 

Table 1- The parameters of Machine Learning methods 

ML Methods Parametrs 

MLP 
Number of Layers: 1 Training Percentage: 65 % 

Number of neurons: 20 Testing Percentage: 30 % 

Structure: 54-20-1 ANN Validation Percentage: 5 % 

GMDH 
Maximum number of neurons in a layer: 30 

Maximum number of layers: 6 Training percentage: 50 % 

Selection pressure: 0.2 Testing percentage: 50 % 

ANFIS-PSO 

Number of the iterations: 5000 Cognitive acceleration: 1 

Number of particles: 65 Social acceleration: 1.5 

Initial inertia weight: 0.8 Training percentage: 70 % 

Final inertia weight: 0.2 Testing percentage: 50 % 
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 1 
Fig. 4 Performances of the ML algorithms: parity plots showing the ML output against the corresponding targets for: (a) MLP re-2 

garding all data; (b) GMDH regarding all data; (c) ANFIS-PSO regarding all data; (d) linear regression line for ML al algorithms. 3 

5. Results 4 

In this part, the details of the optimal designs and the seismic behavior of the 40-story 5 

framed tube are presented. For optimization process the algorithms of AGA, which are 6 

depicted in [2] is used. The AGA algorithm has some differences from the GA, the most 7 

important of which are in the constraints evaluation strategy. In AGA, initial population 8 

members are sorted by goal function, and, despite GA, just the constraints of the best 9 

member are evaluated. If the best member satisfies the constraints, AGA does not evaluate 10 

other members' constraints. If else, the penalty function is applied to the best one, and 11 

then the population is sorted again, and the new best solution is evaluated by the con-12 

straints again. This procedure proceeds to achieve the lowest weight member that is sat-13 

isfied by whole constraints. After reaching this goal, AGA goes to the next level, as is 14 
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shown in the related part in Figure 1. As a result, evaluation of constraints is not done for 1 

whole members of the population in AGA. See [2] for more information. The hyperpa-2 

rameters of AGA were selected by trying different values of the number of generations, 3 

the population size, the crossover probability, and the mutation probability, which 4 

amount of them are 200, 50, 60, and 5 respectively. 5 

The optimization of the 40-story building consists 54 decision variables. The sections’ 6 

depths of the optimal designs associated with the 40-story building with both systems are 7 

given in Table 2. The inter-story drift ratios of different stories, SC/WB ratios, and de-8 

mand-capacity ratios relevant to the optimal design of 40-story building as well as the 9 

corresponding code limits are depicted in Figure 5.  10 

 11 

Table 2- The depth of columns sections in the optimal design of the building in (mm) 

Element Name Group Number 

1 2 3 4 5 6 7 8 9 10 

CC 1210 1118 983 853 724 598 475 401 340 273 

P1C 593 593 581 569 553 533 511 480 433 357 

P2C 605 599 583 566 544 517 493 468 428 358 

GC 994 829 779 728 674 616 550 476 391 281 

PB 577 635 637 631 615 585 563 539 495 423 

GB 598 552 … … … … … … … … 

IGB 590 554 … … … … … … … … 

6. Conclusion 12 

In the current work, the optimal seismic design of high-rise buildings, which is a 13 

large-scale optimization problem, drives to a time-consuming process, and needs huge 14 

computational demands, has been investigated. These problems are cast into the context 15 

of optimization with the combination of evolutionary algorithms and machine learning 16 

methods. AGA, as a novel evolutionary algorithm, has been employed for the optimiza-17 

tion process. The algorithm converged to optimal design, whose specifications have been 18 

presented, with an initial population of 50 after 200 iterations. For constraint evaluation, 19 

three machine learning methods including MLP, GMDH, and ANFIS-PSO have been in-20 

vestigated and the best one, MLP with a coefficient of determination of 0.988, is selected.  21 

Therefore, the strategy mentioned in this paper can be used to achieve the minimum 22 

weight of the tall buildings along with meeting all practical and design code constraints. 23 

This strategy donates a methodical procedure for the reasonable comparison of different 24 

tall building designs. 25 

 26 
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 2 

Fig. 5 Demand-capacity ratio, SC/WB ratio, and drift ratio for optimal candidate in 40-storey building 3 
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