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Abstract: Optimization models for evacuation with capability of holding evacuees at intermediate 9 

places are of particular interest when all the evacuees cannot be sent to the safe destination. We 10 

study the maximum flow evacuation planning problem that aims to lexicographically maximize the 11 

evacuees entering a set of capacitated terminals with respect to a given prioritization. We propose 12 

a polynomial time algorithm for the problem modeled on uniform path length (UPL) network. We 13 

also extend the solution idea to solve quickest flow evacuation planning problem that lexicograph-14 

ically minimizes the time required to fulfill the demand of evacuees at such terminals. Moreover, 15 

we consider an earliest arrival version of the problem with sufficient vertex capacities, and propose 16 

a polynomial time algorithm for uniform path length two terminal series parallel (UPL-TTSP) net-17 

work. 18 

Keywords: TTSP network; Uniform path length network; Lexicographically maximum flows; Evac-19 

uation planning problem 20 

 21 

1. Introduction 22 

Evacuation planning problems modeled with flow conservation at intermediate ver-23 

tices allow evacuees to leave the source only if they reach the sink. However, in many 24 

evacuation scenarios, it would be crucial to send as many evacuees as possible to inter-25 

mediate shelters, despite the safety, where evacuees can be provided medical aids or other 26 

necessary supports. The shelters might be prioritized, and constrained to some capacities 27 

which restrict the number of evacuees that can be held at. The prioritization depends upon 28 

evacuation scenario: facilities, distance from source, holding capacities, etc.  29 

The dynamic version of maximum flow evacuation planning problem attempts to 30 

send a maximum number of evacuees from risk zone (source) to the safe destination (sink) 31 

within given time horizon [12]. Many dynamic network flow problems have been inves-32 

tigated in the context of evacuation planning problems since then, see [8, 9, 11, 15, 16, 21, 33 

26, 27]. Problem closely related to a maximum dynamic flow problem is quickest flow 34 

problem that sends a given units of flow from the source to the sink in minimum possible 35 

time. For models and solutions, see [10, 17, 18, 22]. Problem that attempts to send a max-36 

imum number of evacuees from the source to the sink as earliest as possible within given 37 

time horizon is earliest arrival flow problem [1, 13, 17, 22, 28, 30]. 38 

Authors in [3-8, 21] studied the maximum flow evacuation planning problem mod-39 

eled with relaxed flow conservation constraint that allows evacuees to be held at tempo-40 

rary shelters at intermediate vertices. Lexicographic maximum flow problem with multi-41 

ple sources and multiple sinks of given priorities and sufficient sink capacities has been 42 

studied as an extension of maximum flow problem and showed that this problem can be 43 
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solved in polynomial time in [23, 24, 25]. Authors in [17, 18] studied lexicographic maxi-1 

mum dynamic flows and developed a polynomial time algorithm based on temporally 2 

repeated flows. The problem that computes a feasible dynamic flow maximizing the 3 

amount of flow entering a set of terminals (sink and specified intermediate vertices) lexi-4 

cographically with respect to a given prioritization and given vertex capacities has been 5 

considered in [8] (see also [7, 21]). The authors proposed a polynomial time algorithm for 6 

the static version of the problem and a pseudo-polynomial time algorithm for the dynamic 7 

case. They also showed that the dynamic version of the problem can be solved polynomi-8 

ally, if vertex capacities are sufficient. The earliest arrival flow problem in network with 9 

multiple sinks has been studied in [29] where all arc transit time are zero. For this setting, 10 

they have given a complete characterization of the class of networks that always allow for 11 

earliest arrival flows. An earliest arrival flow problem, maximizing the ratios of flow val-12 

ues to capacities on the sinks lexicographically instead of strictly obeying the capacity 13 

constraints on them, has been studied in [19]. A pseudo-polynomial and a polynomial 14 

time algorithms, for solving the problem with arbitrary and zero transit time for every arc, 15 

respectively, have also been proposed. 16 

We consider lexicographically maximum dynamic flow (LexMDF) problem of [8] in 17 

Section 2 and propose an efficient solution procedure for UPL network in Section 3. We 18 

extend the solution to solve lexicographically earliest arrival flow problem with sufficient 19 

vertex capacities for UPL-TTSP network in Section 4. Moreover, we consider lexicograph-20 

ically quickest flow problem modeled on UPL network and solve it by using the solution 21 

procedure proposed for LexMDF problem in Section 5. Preliminary works on these prob-22 

lems are also appeared in [6]. Section 6 concludes the paper with future research direction. 23 

2. Model discussion 24 

We consider a directed graph 𝐺 =  (𝑉, 𝐴) without containing parallel arcs and loops 25 

to define evacuation planning problem. Here, 𝑉 with 𝑛: = |𝑉| and A with 𝑚: = |𝐴| de-26 

note the vertex set and arc set, respectively, which are assumed to be finite. Vertices and 27 

arcs, in our case, represent the intersections of routes and the route segments joining these 28 

intersections, respectively. Two specified vertices 𝑠  and 𝑑  denote the source and the 29 

sink, respectively. We assume a terminal set 𝑆 ⊂ 𝑉  with 𝑆: =  {𝑣1, . . . , 𝑣𝑘}  prioritized 30 

from higher to lower priority, i.e., 𝑣1  ≽ ⋯  ≽  𝑣𝑘, to be given, where 𝑣1 = 𝑑. The arc ca-31 

pacity function 𝑢: 𝐴 → 𝑁0: = 𝑁 ∪ {0} bounds the number of flow units on each arc at each 32 

time step from above. Similarly, the vertex capacity function 𝑘: 𝑆 → 𝑁0 bounds the total 33 

number of flow units, which may be held in each vertices 𝑣 ∈ 𝑆. We set 𝑘(𝑑) = ∞ and 34 

𝑘(𝑣) to be finite for all 𝑣 ∈ 𝑆 − {𝑑}. Further, the transit time function 𝜏: 𝐴 → 𝑁 specifies 35 

the time needed by a flow unit to traverse an arc. We assume a time horizon 𝑇 ∈ 𝑁 to be 36 

given and treat time parameter in a discrete manner, i.e., 𝑇 ∶=  {0, 1, … , 𝑇}. With these 37 

setup for graph𝐺, i.e., for evacuation network 𝑁 =  (𝐺, 𝑢, 𝑘, 𝜏, 𝑠, 𝑑, 𝑇), we give the network 38 

flow model for the evacuation planning problem in the following. 39 

The non-negative flow variables 𝑓(𝑎, 𝑡), evacuees on the road segment at time 𝑡, de-40 

fined by 𝑓: 𝐴 × 𝑇 → 𝑁0 that specify the flow over time in the network 𝑁 is the number 41 

of flow units entering arc 𝑎 at time step 𝑡 ∈ 𝑇. The number of flow units entering arc 𝑎 42 

at time step 𝑡 are assumed to be bounded by the capacity of an arc, i.e., 𝑓(𝑎, 𝑡) satisfies 43 

the capacity constraints 0 ≤  𝑓(𝑎, 𝑡) ≤  𝑢(𝑎) for all 𝑎 ∈  𝐴 and for all 𝑡 ∈ 𝑇. Moreover, 44 

𝑓(𝑎, 𝑡) has to be equal to zero for all 𝑡 >  𝑇 − 𝜏𝑎and for all 𝑎 ∈  𝐴. The excess flow at ver-45 

tex 𝑣 ∈  𝑉 at time 𝑡 ∈ 𝑇 is defined as 46 

0 ≤ 𝑒𝑥𝑓(𝑣, 𝑡) ≔ ∑ ∑ 𝑓(𝑎, 𝜉)

𝑡−𝜏𝑎

𝜉=0𝑎∈δ−(v)

− ∑ ∑ 𝑓(𝑎, 𝜉)

𝑡

𝜉=0𝑎∈δ+(v)

.                                                                  (1) 47 

Further, we need to ensure that  48 

𝑒𝑥𝑓(𝑣, 𝑇) ≤ 𝑘(𝑣) for all 𝑣 ∈ 𝑆.                                                                                                      (2) 49 

Consequently, the total flow of evacuees leaving the source 𝑠 equals the total flow 50 

of the evacuees held at vertices 𝑣 ∈ 𝑆 over the time horizon 𝑇, i.e., 51 
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∑ ∑ 𝑓(𝑎, 𝜉)

𝑇

𝜉=0𝑎∈δ+(s)

− ∑ ∑ 𝑓(𝑎, 𝜉)

𝑇

𝜉=0𝑎∈δ−(s)

= ∑ 𝑒𝑥𝑓(𝑣, 𝑇)

𝑣∈𝑆

.                                                                     (3) 1 

 2 

The objective function of the maximum flow evacuation planning problem asks to 3 

lexicographically maximize the vector (𝑒𝑥𝑓(𝑣1, 𝑇), . . , 𝑒𝑥𝑓(𝑣1, 𝑇))𝑇  such that 𝑒𝑥𝑓(𝑣𝑖 , 𝑇) ≤4 

𝑒𝑥𝑓(𝑣𝑖 , 𝑇) for 𝑖 = 1, . . . , 𝑘. We call the flow problem on network 𝑁 with this objective as 5 

lexicographic maximum dynamic flow (LexMDF) problem. Dynamic flow problem that 6 

aims to fulfill the objective of LexMDF problem at each time 𝑡 ∈ 𝑇 is lexicographic earliest 7 

arrival flow (LexEAF) problem. For given prioritized set 𝑆 of vertices with fixed demand 8 

at each 𝑣 ∈ 𝑆, the dynamic flow problem that aims to lexicographically minimize the time 9 

required to fulfill these demands is lexicographic quickest flow (LexQF) problem (cf. Sec-10 

tion 5). 11 

3. Solution to LexMDF problem on UPL network 12 

Here, the goal is to solve the LexMDF problem on 𝑁 in polynomial time using tem-13 

porally repeated flows (TRFs). For general network, flow computed by TRFs for some 14 

vertices 𝑣𝑖 ∈ 𝑆 as the sink may exceed their capacities or may not induce optimal flows 15 

for these vertices due to non-uniqueness of path decomposition [8]. An ordinary TRF does 16 

not yield a maximum flow even for two terminal series parallel network [4]. These hurdles 17 

occur due to fixed vertex capacities at vertices. We fix this hurdle for the problem on a 18 

uniform path length (UPL) network 𝑁. A two terminal network 𝑁 with source vertex 𝑠 19 

is a UPL network if, for any vertex 𝑣 ∈ 𝑁, all possible directed 𝑠 − 𝑣 path on 𝑁 have 20 

equal distances. We consider the distance of the path with respect to its transit time. That 21 

is, a network 𝑁 is a uniform path length network for which the sum of the transit times 22 

on arcs on any possible path from the source 𝑠 to any vertex 𝑣 ∈ 𝑁 are equal, see Figure 23 

1. 24 

 25 

Figure 1. A uniform path length (UPL) network 𝑁 with source vertex 𝑠. 26 

 27 

The main idea of the solution procedure of the LexMDF problem on 𝑁 is to find all 28 

possible 𝑠 − 𝑣𝑖  paths at all possible time steps 𝑡 ∈ 𝑇 with corresponding flow value and 29 

send as many units of flow as possible along paths as long as possible. Such paths can be 30 

found by decomposing the flow computed by solving Lexicographic Minimum Cost Cir-31 

culation (LexMCC) problem on 𝑁, iteratively. 32 

Any minimum cost circulation algorithm can be applied to solve LexMCC problem 33 

on 𝑁 repeatedly for each 𝑣𝑖 ∈ 𝑆 as a sink in given priority order on corresponding resid-34 

ual network of 𝑁  with additional arc (𝑣𝑖 , 𝑠) with capacity equal to 𝑘(𝑣𝑖) and transit 35 

time −(𝑇 + 1). Also, the transit time 𝜏(𝑎) for all 𝑎 ∈ 𝐴 is switched into the cost 𝑐(𝑎). 36 

This yields a set Γ𝑣𝑖
of all 𝑠 − 𝑣𝑖 paths, denoted as 𝛾𝑣𝑖

, that could be temporally repeated 37 

from time step zero for each 𝑣𝑖 ∈ 𝑆. It is noteworthy to mention that path 𝛾𝑣𝑖
 is a chain of 38 

vertices and arcs in the network 𝑁 starting at the source 𝑠 and terminating at vertex 𝑣𝑖. 39 

To each path 𝛾𝑣𝑖
 we associate the following information: (a) 𝑓(𝛾𝑣𝑖

)-- the flow value that 40 

can be sent along 𝛾𝑣𝑖
 at once, (b) 𝜏(𝛾𝑣𝑖

)-- the time required to travel 𝛾𝑣𝑖
 by a flow unit, (c) 41 

𝐼𝑡(𝛾𝑣𝑖
)-- the time step at which the flow along 𝛾𝑣𝑖

starts to get repeated and (d) 𝐹𝑡  (𝛾𝑣𝑖
)-- 42 
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the time step after which the flow along 𝛾𝑣𝑖
 stops to get repeated. The procedure for solv-1 

ing LexMCC problem is termed as LexMCC Algorithm, hereafter. 2 

Lemma 3.1 Given a UPL network 𝑁 with prioritized set of vertices 𝑆 ⊂ 𝑉. Then LexMCC 3 

problem can be solved in 𝑂(𝑛 × 𝑀𝐶𝐹(𝑛, 𝑚)) times on 𝑁 where 𝑀𝐶𝐹(𝑛, 𝑚) is the time 4 

complexity for a single MCF problem. 5 

Proof. Lemma follows directly from the fact that |𝑆|  <  |𝑉| = 𝑛.                     ∎ 6 

3.1. Construction of extended set 𝛤𝑣𝑖
𝐸  7 

Consider a UPL network 𝑁 =  (𝐺, 𝑢, 𝑘, 𝜏, 𝑠, 𝑑, 𝑇). Any temporally repeated flow on 8 

𝑁 generated by Γ𝑣𝑖
, the set of 𝑠 − 𝑣𝑖  paths obtained by applying LexMCC algorithm, has 9 

limitation. The limitation is that there may exist 𝑠 − 𝑣𝑖  path, say 𝛾𝑣𝑖
 such that 𝛾𝑣𝑖

∉ Γ𝑣𝑖
 10 

for 𝑣𝑖 ∈ 𝑆, on the residual network of 𝑁 for an interval of time with transit time 𝜏(𝛾𝑣𝑖
) <11 

𝑇 + 1 − 𝐼𝑡(𝛾𝑣𝑖
) along which some flow units could be sent at 𝑣𝑖 . This situation occurs 12 

when any path 𝛾𝑣𝑗
∈ ⋃ Γ𝑣𝑗

𝑖−1
𝑗=1  is free to carry flow units at 𝑣𝑖 at time 𝐼𝑡(𝛾𝑣𝑖

) > 0, due to 13 

time limit or capacity at vertex 𝑣𝑗 for some 𝑗 < 𝑖, before the time 𝑇 + 1 − 𝜏(𝛾𝑣𝑖
). In this 14 

situation, 𝐼𝑡(𝛾𝑣𝑖
) = 𝐹𝑡 (𝛾𝑣𝑗

) + 1 − 𝑁(𝛾𝑣𝑗
) where 𝑁(𝛾𝑣𝑗

) is the actual number of times that 15 

the flow along 𝛾𝑣𝑗
 is repeated. The number of actual repetitions 𝑁(𝛾𝑣𝑖

) along any path 16 

𝛾𝑣𝑖
 depends upon vertex capacity 𝑘(𝑣𝑖) and is given by the Path Flows Repetition (PFR) 17 

technique (cf. Subsection 3.2). Thus, applying lexMCC Algorithm at time zero only may 18 

not be enough for the optimal solution at all possible vertices using the TRF approach. 19 

Thus, it is required to find an extended set Γvi
E  that contains all possible 𝑠 − 𝑣𝑖 paths, say 20 

𝛾𝑣𝑖
, which could be started to repeat at time 𝐼𝑡(𝛾𝑣𝑖

) ≥ 0. 21 

An extended set of paths Γvi
E  is given by  22 

Γvi
E ≔ {

Γ𝑣𝑖
 𝑓𝑜𝑟 𝑖 = 1

Γ𝑣𝑖
∪ Γvi

′  𝑓𝑜𝑟 𝑖 > 1
 23 

where Γvi
′  is the set of all 𝑠 − 𝑣𝑖 paths that are free to carry flow units at 𝑣𝑖 at time inter-24 

vals  𝐼1(𝛾𝑣𝑖−1
) =  [𝐼𝑡(𝛾𝑣𝑖−1

),  𝐹𝑡(𝛾𝑣𝑖−1
) − 𝑁(𝛾𝑣𝑖−1

)] and  𝐼2(𝛾𝑣𝑖−1
) = [𝐹𝑡(𝛾𝑣𝑖−1

) + 1, 𝑇]  with re-25 

spect to each path 𝛾𝑣𝑖−1
∈ Γvi−1

E .  Union of these two intervals are the complement of the 26 

interval of time period in which the path  𝛾𝑣𝑖−1
  is engaged in sending flow units at vertex 27 

 𝑣𝑖−1 , given by  [𝐹𝑡(𝛾𝑣𝑖−1
) + 1 −  𝑁(𝛾𝑣𝑖−1

),  𝐹𝑡(𝛾𝑣𝑖−1
)] , on the time interval 28 

 [𝐼𝑡(𝛾𝑣𝑖−1
), 𝑇]. First interval  𝐼1(𝛾𝑣𝑖−1

)  is discarded if  𝐹𝑡(𝛾𝑣𝑖−1
) − 𝑁(𝛾𝑣𝑖−1

) <  𝐼𝑡(𝛾𝑣𝑖−1
), and 29 

second interval   𝐼2(𝛾𝑣𝑖−1
)  is discarded if its own immediate parent interval is  𝐼1(𝛾𝑣𝑖−2

). If 30 

no interval is discarded, they are merged in a single interval  [𝐼𝑡(𝛾𝑣𝑖−1
), 𝑇]  if 𝑁(𝛾𝑣𝑖−1

) = 0, 31 

and taken as two different intervals if  𝑁(𝛾𝑣𝑖−1
) > 0. It is to be noted that  𝐼1(𝛾𝑣1

) = ∅ for 32 

all 𝛾𝑣1
∈ Γ𝑣1

. 33 

Residual network of 𝑁 after solving LexMCC problem on it, say 𝑁Γ𝑣𝑘
 , is renovated 34 

with respect to the path 𝛾𝑣𝑖−1
 for corresponding free time intervals 𝐼1 and 𝐼2, separately. 35 

Then LexMCC Algorithm is applied on it to find the set Γvi
′ . During renovation, the capac-36 

ity of each arc 𝑎 ∈ 𝑁Γ𝑣𝑘
 is increased by 𝑓(𝛾𝑣𝑖−1

) if the arc 𝑎 = (𝑣, 𝑤) also belongs to path 37 

𝛾𝑣𝑖−1
; and the capacity of the arc (𝑤, 𝑣)  ∈ 𝑁Γ𝑣𝑘

 is decreased by the same value 𝑓(𝛾𝑣𝑖−1
). 38 

That is, 39 

𝑢(𝑎) ≔ {
𝑢(𝑎) + 𝑓(𝛾𝑣𝑖−1

) 𝑓𝑜𝑟 𝑎 = (𝑣, 𝑤) ∈ 𝑁Γ𝑣𝑘
𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑎 ∈ 𝛾𝑣𝑖−1

𝑢(𝑎) − 𝑓(𝛾𝑣𝑖−1
) 𝑓𝑜𝑟 𝑎 = (𝑤, 𝑣) ∈ 𝑁Γ𝑣𝑘

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑎 = (𝑣, 𝑤) ∈ 𝛾𝑣𝑖−1

 40 

 41 

The LexMCC Algorithm is applied only after renovation of residual network 𝑁Γ𝑣𝑘
 42 

with respect to all paths 𝛾𝑣𝑖−1
∈ Γvi−1

E that are free at the same interval of time. This signifi-43 

cantly reduces computational complexity (application of MCC Algorithm) of the entire 44 

algorithm. This is not possible if 𝑁 is not a UPL network. While choosing the second, 45 

third and so on paths for renovation, the network which is renovated with respect to first, 46 
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second and so on paths, respectively, is renovated. This process is repeated for all 𝛾𝑣𝑖−1
∈1 

Γvi−1
E . 2 

 3.2. Path flows repetition (PFR) technique 3 

To compute a lexicographic maximum dynamic flow on 𝑁, it is required to repeat 4 

path flows in Γvi
E  respecting capacities 𝑘(vi) for each vi ∈ 𝑆. For this we propose the fol-5 

lowing Path Flows Repetition (PFR) Technique.  6 

Paths 𝛾𝑣𝑖
∈ Γvi

E  are indexed as 𝛾𝑣𝑖

𝑝 ; 𝑝 = 1,2, … , 𝑙 , in such a way that the path with 7 

highest final time, 𝐹𝑡  (𝛾𝑣𝑖

𝑝
)  among the paths 𝛾𝑣𝑖

∈ Γvi
E  with highest initial time,  𝐼𝑡  (𝛾𝑣𝑖

𝑝
) 8 

gets the least vertex exponent 𝑝 and so on. If two paths 𝛾𝑣𝑖
′  and 𝛾𝑣𝑖

′′  have same final 9 

time, choice of path depends on the priority vertex the paths pass through. For example, 10 

if path 𝛾𝑣𝑖
′  passes through the vertex 𝑣𝑖−1 and the path 𝛾𝑣𝑖

′′  passes through the vertex 11 

𝑣𝑖−2 whiling reaching at vertex 𝑣𝑖, we choose the path 𝛾𝑣𝑖
′′ . Tie after this can be broken 12 

arbitrarily. 13 

The computation of TRF 𝑓(𝛾𝑣𝑖

𝑝
) ≔ ∑ (𝑇 + 1 −

𝑝
𝑞=1 𝐼𝑡  (𝛾𝑣𝑖

𝑞
) − 𝜏(𝛾𝑣𝑖

𝑞
))𝑓(𝛾𝑣𝑖

𝑞
) for vertex 𝑣𝑖 14 

starts with 𝑝 = 1. If 𝑓(𝛾𝑣𝑖

𝑝
) = 𝑘(𝑣𝑖), 𝑓(𝛾𝑣𝑖

𝑝
) is a maximum flow for 𝑣𝑖 . If 𝑓(𝛾𝑣𝑖

𝑝
) < 𝑘(𝑣𝑖), 15 

𝑓(𝛾𝑣𝑖

𝑝+1
) is computed if 𝑝 + 1 ≤  𝑙, otherwise 𝑓(𝛾𝑣𝑖

𝑝
) is maximum. If 𝑘(𝑣𝑖) < 𝑓(𝛾𝑣𝑖

𝑝
), 𝑘(𝑣𝑖) 16 

is maximum flow for 𝑝 = 1; and 𝑓(𝛾𝑣𝑖

𝑝−1
) + 𝑘𝑟(𝑣𝑖) is maximum for 𝑝 >  1 at the vertex 17 

𝑣𝑖. The TRF is likely to get flow repeated more than once over the time horizon 𝑇. If flow 18 

repetition occurs more than once along the path 𝛾𝑣𝑖

𝑝  over 𝑇 , the time interval 𝑇′ =19 

[𝐼𝑡  (𝛾𝑣𝑖

𝑝
) + 𝜏 (𝐼𝑡  (𝛾𝑣𝑖

𝑝
)) , 𝑇] is halved and the TRF is computed in the second half. The com-20 

puted flow is then added to 𝑓(𝛾𝑣𝑖

𝑝−1
). The total flow is compared to the vertex capacity. 21 

Flow in the first half is also computed and then added if the total flow is less than the 22 

vertex capacity. If the total flow exceeds the vertex capacity, the added flow is discarded. 23 

Then the second half is further halved and the procedure is repeated. Integral time units 24 

of time horizon 𝑇 is preserved by rounding up or down to the nearest integer during 25 

halving the interval. The procedure is executed if the total flow equals the vertex capacity 26 

or if 𝑙 <  𝑝. 27 

A flow with value more than the residual vertex capacity 𝑘𝑟(𝑣𝑖) may occur along the 28 

path 𝛾𝑣𝑖

𝑝  while sending even at once at the vertex 𝑣𝑖. In this situation, the set Γvi
E  is up-29 

dated by splitting 𝛾𝑣𝑖

𝑝  into 𝛾𝑣𝑖

𝑝′

 and 𝛾𝑣𝑖

𝑝′′

 with flow values 𝑘𝑟(𝑣𝑖)and 𝑓(𝛾𝑣𝑖

𝑝
) − 𝑘𝑟(𝑣𝑖), re-30 

spectively. 31 

Algorithm 1 summarizes the procedure that yields the maximum flow on network 32 

𝑁 at each of the possible vertices in given priority order.  33 

 34 

Algorithm 1: DT-LexMDF Algorithm for UPL Network 35 

1. Given a dynamic UPL network 𝑁 =  (𝐺, 𝑢, 𝑘, 𝜏, 𝑠, 𝑑, 𝑇), 𝑆: = {𝑣1, . . . , 𝑣𝑘} with 𝑑 = 𝑣1  ≽36 

⋯  ≽  𝑣𝑘. 37 

2. Find Γ𝑣𝑖
 for all 𝑖 = 1, 2, . . . , 𝑘 by solving the LexMCC problem on 𝑁 with additional 38 

arcs (𝑣𝑖 , 𝑠) with capacity 𝑘(𝑣𝑖) and transit times −(𝑇 + 1).  39 

3. For 𝑖 = 1, set Γvi
E ∶=  Γ𝑣𝑖

 and apply PFR technique on Γvi
E . For 𝑖 > 1, go to step 4. 40 

4. For each path 𝛾𝑣𝑖−1
∈ Γvi−1

E  , find the interval  [𝐹𝑡(𝛾𝑣𝑖−1
) + 1 −  𝑁(𝛾𝑣𝑖−1

),  𝐹𝑡(𝛾𝑣𝑖−1
) and 41 

intervals  𝐼1 =  [𝐼𝑡(𝛾𝑣𝑖−1
),  𝐹𝑡(𝛾𝑣𝑖−1

) − 𝑁(𝛾𝑣𝑖−1
)] and  𝐼2 =  [𝐹𝑡(𝛾𝑣𝑖−1

) + 1, 𝑇].  42 

5. Renovate the network 𝑁Γ𝑣𝑘
 with respect to path 𝛾𝑣𝑖−1

 for intervals  𝐼1 and  𝐼2. 43 

6. Find Γvi
′  for all 𝑖 =  2, . . . , 𝑘 by solving the LexMCC problem on renovated 𝑁Γ𝑣𝑘

 as 44 

initial time 𝐼𝑡(𝛾𝑣𝑖
), with additional arcs (𝑣𝑖 , 𝑠) with capacity 𝑘(𝑣𝑖) and transit time 45 

−(𝑇 + 1). 46 

7. Set Γvi
E ∶=  Γ𝑣𝑖

 and update Γvi
E ∶=  Γvi

E  ∪ Γvi
′  for all 𝑖 =  2, . . . , 𝑘. 47 

8. Apply PFR technique on Γvi
E . 48 

9. Obtain dynamic 𝑠 − 𝑣𝑖  flow on 𝑁. 49 
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Lemma 3.2 In Algorithm 1, LexMCC problem is solved at most 2𝑛 times for each 𝑣𝑖 ∈ 𝑆. 1 

Proof. At first we prove that the application of PFR technique on Γvi
E , for each 𝑣𝑖 ∈ 𝑆, cre-2 

ates at most 2 new free time intervals for next prioritized vertex 𝑣𝑖+1. For, let TRF 𝑓(𝛾𝑣𝑖

𝑝
) 3 

be any optimal flow for 𝑣𝑖 on 𝑁 obtained by the application of PFR on Γvi
E . Also, let 𝛾𝑣𝑖

𝑝  4 

is the path that exists in the interval  [𝐼𝑡(𝛾𝑣𝑖
),  𝐹𝑡(𝛾𝑣𝑖

)]. Here, if TRF 𝑓(𝛾𝑣𝑖

𝑝
) is obtained 5 

when all the paths that exist to carry flow at 𝑣𝑖 are repeated temporally for all time steps 6 

in the interval, no new free time interval for 𝑣𝑖+1 is formed. If all of such path are repeated 7 

for equal number of times less than the maximum possible time steps in the interval, only 8 

one new free time interval is formed. And, if any one of such paths needs to be split in to 9 

two paths and repeated one of them for some less or more number of times than other, 10 

one extra new free time interval is formed for next prioritized vertex 𝑣𝑖+1.  11 

 For 𝑖 = 1, the MCC Algorithm is applied only once and twice for 𝑖 = 2; once with 12 

initial time as zero and next with initial time as 𝐹𝑡(𝛾𝑣1
), being sufficient capacity at 𝑣1 =13 

𝑑. However, for 𝑖 > 2, the number of times for the application of the algorithm is in-14 

creased by at most 2 in each of at most 𝑛 iterations, due to above argument and since it 15 

is applied only after the renovation of 𝑁Γ𝑣𝑘
with respect to all paths 𝛾𝑣𝑖−1

∈ Γvi−1
E  that are 16 

free at the same interval of time. Therefore, to compute the extended set Γvi
E , LexMCC 17 

problem is solved at most 2𝑛 times for each 𝑣𝑖 ∈ 𝑆.                              ∎ 18 

Lemma 3.3. Renovation of the residual network 𝑁Γ𝑣𝑘
is well defined for each iteration. 19 

Proof. The residual network 𝑁Γ𝑣𝑘
 is well defined by its definition. It is renovated with 20 

respect to each path 𝛾𝑣𝑖−1
∈ Γvi−1

E  that exist in the same interval of time by taking any one 21 

of such paths at the first. While choosing the second, third and so on paths, the network 22 

which is renovated with respect to first, second and so on paths, respectively, is consid-23 

ered for renovation. During renovation with respect to path 𝛾𝑣𝑖−1
, the capacity of each arc 24 

𝑎 = (𝑣, 𝑤)  ∈ 𝑁Γ𝑣𝑘
 is increased by 𝑓(𝛾𝑣𝑖−1

) if the arc 𝑎 also belongs to 𝛾𝑣𝑖−1
, and the ca-25 

pacity of the arc (𝑤, 𝑣)  ∈ 𝑁Γ𝑣𝑘
 is decreased by the same value 𝑓(𝛾𝑣𝑖−1

). The renovation of 26 

the network is done only for those interval of time which was never been used by the path 27 

𝛾𝑣𝑖−1
 during temporal repetition. Thus, the renovation of the residual network 𝑁Γ𝑣𝑘

 is 28 

well defined for each iteration.                                               ∎ 29 

Lemma 3.4. For any vertex 𝑣𝑖 ∈ 𝑆, the number of paths in extended set Γvi
E  is bounded 30 

above by 2𝑛𝑚. 31 

Proof. By Lemma 3.2, LexMCC problem is solved at most 2𝑛 times for each 𝑣𝑖 ∈ 𝑆. And, 32 

at most 𝑚 minimum cost flow paths from the source 𝑠 to the vertex 𝑣𝑖 do exist in each 33 

iteration. Therefore, the number of paths in Γvi
E , for 𝑣𝑖 ∈ 𝑆, does not exceed 2𝑛𝑚.     ∎ 34 

Lemma 3.5. The residual network 𝑁Γ𝑣𝑘
 is renovated in time 𝑂(𝑛𝑚) for each 𝑣𝑖 ∈ 𝑆. 35 

Proof. For each vertex 𝑣𝑖 ∈ 𝑆, the residual network 𝑁Γ𝑣𝑘
 is renovated with respect to each 36 

path 𝛾vi−1
∈ Γvi−1

E , separately. By Lemma 3.4, there are at most 2𝑛𝑚 paths in Γvi
E . There-37 

fore, the number of iterations for renovation of network 𝑁Γ𝑣𝑘
 for a vertex 𝑣𝑖 ∈ 𝑆 is 2𝑛𝑚. 38 

This concludes that the residual network 𝑁Γ𝑣𝑘
 can be renovated in time 𝑂(𝑛𝑚 ) for each 39 

𝑣𝑖 ∈ 𝑆.                                                                ∎ 40 

 41 

Lemma 3.6. The PFR technique executes in time 𝑂(𝑛𝑚 +  𝑙𝑜𝑔𝑇). 42 

Proof. The extended set Γvi
E  has at most 2𝑛𝑚 paths, by Lemma 3.4. Therefore, TRF 𝑓(𝛾𝑣𝑖

𝑝
) 43 

is computed on Γvi
E  and compared to the vertex capacity 𝑘(𝑣𝑖) at most 2𝑛𝑚 times. Ad-44 

ditionally, while the computed TRF 𝑓(𝛾𝑣𝑖

𝑝
) exceeds the vertex capacity at 𝑣𝑖, the interval 45 

𝑇′ =  [𝐼𝑡(𝛾𝑣𝑖

𝑝
), 𝐹𝑡(𝛾𝑣𝑖

𝑝
)] is halved and the TRF is computed in one of the half intervals. This 46 
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process needs repetition until the length of halved interval is unity in worst case. There-1 

fore, this process takes 𝑂(𝑙𝑜𝑔𝑇) time to execute. This concludes that the PFR technique 2 

executes in time 𝑂(𝑛𝑚 +  𝑙𝑜𝑔𝑇).                                     ∎ 3 

 4 

Theorem 3.7. Given a UPL network 𝑁 =  (𝐺, 𝑢, 𝑘, 𝜏, 𝑠, 𝑑, 𝑇)  and terminal set 𝑆: =5 

{𝑣1, . . . , 𝑣𝑘} ⊂ 𝑉 with 𝑑 = 𝑣1  ≽ ⋯  ≽  𝑣𝑘 . Then, Algorithm 1 yields an optimal solution to 6 

the LexMDF problem on 𝑁. 7 

Proof. As the vertex 𝑣1(=  𝑑) has sufficient storage capacity, applying Path Flows Repe-8 

tition technique for this vertex as the sink is equivalent to pushing the flow units with 9 

value 𝑓(𝛾v1
) along each path 𝛾v1

∈ Γv1
for each time step 𝑡 ∈ {0, 1, . . . , 𝑇 −  𝜏𝛾v1

} from the 10 

source s to the sink 𝑑. This temporally repeated flow for sink d induces a dynamic 𝑠 − 𝑑 11 

flow which is feasible and optimal [12]. 12 

 For each > 1, the extended set Γvi
E  contains all minimum cost 𝑠 − vi paths that exist 13 

at any time step 𝑡 ∈ {0, 1, . . . , 𝑇} on residual network of 𝑁 with respect to the optimal 14 

flow 𝑓(𝛾𝑣𝑖−1

𝑝
) at previous immediate prioritized vertex 𝑣𝑖−1 . Thus, the TRF 𝑓(𝛾𝑣𝑖

𝑝
) ob-15 

tained by applying PFR technique on Γvi
E  is feasible. The technique pushes flows of corre-16 

sponding values along each path as long as possible unless 𝑘(𝑣𝑖) is satisfied. Moreover, 17 

the flow is pushed along the paths in Γvi
E  with the strategy of saving unused paths in Γvi

E  18 

for the use of next less prioritized vertex 𝑣𝑖+1 without violating the optimality at 𝑣𝑖. This 19 

is assured by selecting the path with highest final time, 𝐹𝑡(𝛾𝑣𝑖

𝑝
) among the paths 𝛾vi

∈ Γvi
E  20 

with highest initial time, 𝐼𝑡(𝛾𝑣𝑖

𝑝
) at the first and so on. Thus, TRF 𝑓(𝛾𝑣𝑖

𝑝
) is optimal on 𝑁 21 

for each 𝑣𝑖 ∈ 𝑆.                                                             ∎ 22 

Theorem 3.8. Algorithm1 runs in strongly polynomial time. 23 

Proof. Due to Lemmas 3.1 and 3.2, the LexMCC problem can be solved in time 𝑂(𝑛 ×24 

𝑀𝐶𝐹(𝑛, 𝑚)) for at most 2𝑛 times for each of at most 𝑛 vertices 𝑣𝑖 ∈ 𝑆. Due to Lemma 25 

3.5, the residual network 𝑁Γ𝑣𝑘
 is renovated in time 𝑂(𝑛𝑚) for each 𝑣𝑖 ∈ 𝑆. The PFR tech-26 

nique can be performed in 𝑂(𝑛𝑚 +  𝑙𝑜𝑔𝑇) time for each vertex 𝑣𝑖 ∈ 𝑆, by Lemma 3.6. If 27 

one wishes to apply the MCF algorithm of [14], LexMCC Algorithm has complexity of 28 

order (𝑛2𝑚3 𝑙𝑜𝑔𝑛). Thus, Algorithm 1 runs in 𝑂(𝑛3 (𝑛2 𝑚3 𝑙𝑜𝑔𝑛)  +  𝑛(𝑛 𝑚 )  +  𝑛(𝑛𝑚 +29 

 𝑙𝑜𝑔𝑇)). Equivalently, the algorithm has time complexity of order 𝑂(𝑛5𝑚3 𝑙𝑜𝑔𝑛 +  𝑛2𝑚 +30 

 𝑛 𝑙𝑜𝑔𝑇) which is strongly polynomial.                     ∎ 31 

4. Lexicographic earliest arrival flow problem on UPL-TTSP network 32 

A DT-LexMDF problem that fulfills its objective at each time step 𝑡 ∈ 𝑇 is a discrete 33 

time lexicographic earliest arrival flow (DT-LexEAF) problem. That is, the objective of a 34 

DT-LexEAF evacuation planning problem is to send a maximum number of evacuees at 35 

the possible earliest time from risk zone to the safety together with relatively safe priori-36 

tized intermediate spots within given time horizon 𝑇 in given priority order. 37 

It is clear that every earliest arrival flow is a maximum dynamic flow for given time 38 

horizon. However, the converse is not always true for general network. In this section, we 39 

purpose a solution procedure that computes a lexicographic maximum dynamic flow on 40 

a typical network and claim that this flow schedule has an earliest arrival property. 41 

Consider a UPL-TTSP network 𝑁 =  (𝐺, 𝑢, 𝑘, 𝜏, 𝑇) with terminal set 𝑆 ⊂  𝑉 as in the 42 

case of LexMDF problem in Section 3. Here, the vertex 𝑣1 always gets sufficient holding 43 

capacity whereas vertices 𝑣𝑖 for 𝑖 > 1, get either zero or sufficient capacities. That is, not 44 

all vertices in 𝑉 have holding capacities on them. With these settings the LexEAF problem 45 

on 𝑁 aims to maximize the flow units sent to the terminals in 𝑆 in given priority order 46 

at each time step 𝑡 ∈ 𝑇.  47 

The solution strategy to DT-LexEAF problem on UPL-TTSP network 𝑁 is similar to 48 

that of EAF problem on TTSP network given in [28]. The strategy is applied to solve the 49 

LexMCC problem on N repeatedly for each 𝑣𝑖 ∈ 𝑆 with additional arc (𝑣𝑖 , 𝑠) with capac-50 

ity equal to 𝑘(𝑣𝑖) and transit time −(𝑇 + 1). This yields a set Γ𝑣𝑖
 of all 𝑠 − 𝑣𝑖  paths that 51 
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could be temporally repeated for each 𝑣𝑖 ∈ 𝑆. However, dynamic flow generated by tem-1 

porally repeated flow along the paths obtained by solving this problem may not be opti-2 

mal on 𝑁 at all possible vertices. This hurdle can be overcome by the construction of ex-3 

tended set of paths Γvi
E  as in the case of DT-LexMDF problem in Section 3 for UPL net-4 

work. Here, 𝑘(𝑣𝑖) being sufficient, there does not exist the free time interval 𝐼1 which sig-5 

nificantly reduces computational complexity of the LexMCC problem. The set Γvi
E  induces 6 

an optimal dynamic flow for each 𝑣𝑖 on 𝑁. 7 

The exact solution procedure that yields the discrete time maximum dynamic flow 8 

at each vertices 𝑣𝑖 ∈ 𝑆 is given in Algorithm 2.  9 

Algorithm 2: DT-LexEAF Algorithm for UPL-TTSP Network 10 

1. Given a UPL-TTSP network 𝑁 =  (𝐺, 𝑢, 𝑘, 𝜏, 𝑠, 𝑑, 𝑇), 𝑆: = {𝑣1, . . . , 𝑣𝑘} with 𝑑 = 𝑣1  ≽11 

⋯  ≽  𝑣𝑘. 12 

2. Solve LexMCC problem on N with additional arcs (𝑣𝑖 , 𝑠) with capacity 𝑘(𝑣𝑖) and 13 

transit times −(𝑇 + 1) using algorithm in [2]. 14 

3. Construct extended set Γvi
E  as in Algorithm 1. 15 

4. Push as much flow as possible along each path in Γvi
Eas long as possible within 𝑇. 16 

5. Obtain dynamic 𝑠 − 𝑣𝑖 flow on 𝑁. 17 

Theorem 4.1. Algorithm 2 yields an optimal solution to DT-LexEAF problem on UPL-18 

TTSP network 𝑁 =  (𝐺, 𝑢, 𝑘, 𝜏, 𝑠, 𝑑, 𝑇) in strongly polynomial time. 19 

Proof. The algorithm pushes flow of value 𝑓(𝛾𝑣𝑖
) along each path on Γvi

E  for each possible 20 

time step 𝑡 ∈  {0, 1, 2, . . . , 𝑇 −  𝜏𝛾𝑣𝑖
} from the source vertex 𝑠 to each of the destination 21 

vertex 𝑣𝑖 ∈ 𝑆 in given priority order. Therefore, a maximum flow at each 𝑣𝑖 ∈ 𝑆 is ob-22 

tained at the termination of algorithm, [12]. Moreover, the network 𝑁 being a two termi-23 

nal series parallel in structure, this flow has an earliest arrival property [28]. 24 

 The extended set of paths Γvi
E  in step 3 of algorithm is constructed by applying the 25 

MCC Algorithm in [2] with time complexity of order 𝑂(𝑚𝑛 +  𝑚 𝑙𝑜𝑔𝑚)  at most 𝑛𝑚 26 

times for each vertex 𝑣𝑖 ∈ 𝑆. Step 4 is executed in constant time for each of at most 𝑛 ver-27 

tices 𝑣𝑖 ∈ 𝑉. Therefore, Algorithm 2 yields a lexicographic earliest arrival flow on 𝑁 in 28 

strongly polynomial time.                                                    ∎ 29 

5 Lexicographic quickest flow problem on UPL network 30 

Consider the network 𝑁 with fixed vertex holding capacities. Let us impose the con-31 

dition for these capacities to be fulfilled as an upper bound as well as a lower bound by 32 

the total flow value that is supposed to be held at that vertex. Then vertex capacities can 33 

be taken as demands, say, 𝜇(𝑣) at v for 𝑣 ∈ 𝑉 − {𝑠}. This consideration allows to see a 34 

dynamic flow problem on 𝑁 with demands at vertices and asking for a minimum time to 35 

satisfy these demands in given priority order. In the following, we define this problem 36 

formally. The application of the problem on evacuation planning is obvious when evacu-37 

ees at the source are known in advance and one wishes to send them to different priori-38 

tized safety places of fixed holding capacities. 39 

Given a network 𝑁 =  (𝐺, 𝑢, 𝜏, 𝜇) with terminal set 𝑆 ⊂  𝑉 with 𝑆: = {𝑣1, . . . , 𝑣𝑘} pri-40 

oritized from higher to lower priority, i.e., 𝑑 = 𝑣1  ≽ ⋯  ≽  𝑣𝑘; such that ∑ 𝜇(𝑣𝑖)𝑖 = −𝜇(𝑠) 41 

where 𝜇: 𝑉 → 𝑁0 is the demand at the vertex 𝑣 ∈  𝑉. The negative demand at the source 42 

s is termed as supply. Moreover, we restrict the arc capacity 𝑢(𝑎) for each arc 𝑎 ∈ 𝐴 to 43 

be strictly positive and consider the network 𝑁 in such a way that the source vertex s is 44 

the mother vertex for all the vertices 𝑣𝑖 ∈ 𝑆. Then the lexicographic quickest flow (LexQF) 45 

problem finds a feasible dynamic flow 𝑓(𝑣𝑖)of given value 𝜇(𝑣𝑖) on network N from the 46 

source s to the vertex 𝑣𝑖, in given priority order, which sends the given 𝜇(𝑣𝑖)units of flow 47 

from 𝑠  to 𝑣𝑖  in minimum number 𝜇(𝑣𝑖)  of time units. Moreover, the excess 48 

𝑒𝑥𝑓(𝑣𝑖 , 𝑇(𝜇(𝑣𝑖))at each 𝑣𝑖 ∈ 𝑆 given by equation 2.1 should be equal to the demand at 49 

𝑇(𝜇(𝑣𝑖)). That is,  50 
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𝑒𝑥𝑓(𝑣𝑖 , 𝑇(𝜇(𝑣𝑖)) = 𝜇(𝑣𝑖) for all 𝑣𝑖 ∈ 𝑆.                                                                                      (4) 1 

 2 

Thus, the objective function of the lexicographic quickest flow evacuation planning 3 

problem asks to lexicographically minimize the vector 4 

(𝑇(𝜇(𝑣1)), 𝑇(𝜇(𝑣2)), . . . , 𝑇(𝜇(𝑣𝑘)))𝑇. 5 

5.1 Existence of lexicographic quickest flow 6 

The existence of lexicographic quickest flow on a uniform path length network N is 7 

obvious, if Γvi
E  (cf. Section 3) is not empty for all 𝑣𝑖 ∈ 𝑆. There always exists at least one 8 

path from the source s to the vertex 𝑣𝑖 in the extended set of paths Γvi
E  with correspond-9 

ing positive flow value since every vertex 𝑣𝑖 ∈ 𝑆 being reachable from 𝑠 and 𝑢(𝑎) being 10 

positive for each 𝑎 ∈ 𝐴. This is ensured from the fact that during the construction of ex-11 

tended set Γvi
E  the renovation of the network 𝑁Γ𝑣𝑘

 with respect to at least one path 𝛾𝑣𝑖−1
∈12 

Γvi−1
E  makes the renovated network free to exist at least one path from 𝑠 to 𝑣𝑖. Thus, Γvi

E ≠13 

∅ for each 𝑣𝑖 ∈ 𝑆. 14 

5.2 Solution for lexicographic quickest flow problem 15 

Here we discuss the solution procedure for the lexicographic quickest flow problem 16 

for a UPL network 𝑁. The procedure to the problem is similar to the binary search method 17 

for solving a quickest flow problem in [10]. In this method, for an strictly increasing se-18 

quence of integral time points {𝑇𝑛}, an initial interval 𝐼0  =  [𝑇𝑙 , 𝑇𝑢] such that 𝑓(𝑇𝑙)  <19 

 𝜇(𝑣𝑖)  <  𝑓(𝑇𝑢) , is taken. Here,  𝑓(𝑇𝑙)  and 𝑓(𝑇𝑢)  denote the maximum dynamic flow 20 

value for time horizon 𝑇𝑙  and 𝑇𝑢 , respectively. Clearly, 𝑇𝑙  ≤  𝑇(𝜇(𝑣𝑖)) ≤  𝑇𝑢  where 21 

𝑇(𝜇(𝑣𝑖)) is the minimum time that requires for flow units of value 𝜇(𝑣𝑖) to send from the 22 

source to the vertex 𝑣𝑖. Then the mid-point, say, 𝑇𝑚, of the interval 𝐼0 is computed and 23 

𝑓(𝑇𝑚)is checked for whether it is equal to, less than or greater than 𝜇(𝑣𝑖). Depending upon 24 

this value, it is decided whether the procedure ends, or should work on the next interval 25 

on the left or right of the mid-point 𝑇𝑚. 26 

Since we are interested in finding such minimum time 𝑇𝑚 for each vertices 𝑣𝑖 ∈ 𝑆 in 27 

a priority order, the maximum flow computation technique developed in Section 3 is 28 

adopted as a subroutine of the procedure with necessary modification. During the proce-29 

dure, the major step is to construct extended set of paths Γvi
E . Here, the free time intervals 30 

𝐼1 and 𝐼2 , if exist, with respect to each path 𝛾vi−1
∈ Γvi−1

 are to be calculated in each of 31 

new selections of mid-point time 𝑇𝑚 before renovation of the network 𝑁Γ𝑣𝑘
. Now, the 32 

following cases arises: If 𝐹𝑡(𝛾vi−1
)  <  𝑇𝑚, replace 𝑇 by 𝑇𝑚in 𝐼2. If 𝐹𝑡(𝛾vi−1

)  − 𝑁 <  𝑇𝑚  <33 

𝐹𝑡(𝛾vi−1
) + 1 , discard 𝐼2 . If 𝐼𝑡(𝛾vi−1

)  <  𝑇𝑚  <  𝐹𝑡(𝛾vi−1
) + 1 − 𝑁 discard I_2 and replace 34 

𝐹𝑡(𝛾vi−1
) − 𝑁  by 𝑇𝑚  in 𝐼1 . And, if 𝐼𝑡(𝛾vi−1

)  >  𝑇𝑚 , discard both 𝐼1  and 𝐼2  . It is to be 35 

noted that Γ𝑣𝑗
 for all 𝑗 > 𝑖 are discarded until we found Γ𝑣𝑖

 that sends all flow 𝜇(𝑣𝑖) in 36 

time horizon 𝑇𝑚 such that it is minimum. We proceed with this procedure for each verti-37 

ces 𝑣𝑖 ∈ 𝑆 in given priority order.  38 

Due to the nature of construction of a maximum flow (cf. Algorithm 1), maximum 39 

flow of value 𝜇(𝑣𝑖)obtained for time horizon 𝑇𝑚, could also be possible to find in lesser 40 

time horizon 𝑇𝑚
′  for some vertices 𝑣𝑖. That is, it cannot be guaranteed that the time 𝑇𝑚 at 41 

which dynamic flow of value 𝜇(𝑣𝑖) can be sent to 𝑣𝑖 is the minimum time to attain this 42 

flow value. One should check whether the same flow value is attained for some lesser 43 

time. Thus, for (𝑇𝑚) = 𝜇(𝑣𝑖), 𝑇𝑚 is optimal if and only if 𝑓(𝑇𝑚 − 1) <  𝜇(𝑣𝑖) for all 𝑣𝑖 ∈44 

𝑆 as suggested in [10] for 𝑠 − 𝑑 quickest flow problem. 45 

During the procedure, flow computed by the application of LexMDF Algorithm as a 46 

subroutine is optimal due to Theorem 3.7. Also, this algorithm runs in strongly polyno-47 

mial time due to Theorem 3.8. The next major step in the procedure is to perform a binary 48 

search over time horizon repeatedly. This can be done in strongly polynomial time. Thus, 49 
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from above algorithmic discussion we can assert that LexQF problem on UPL network 𝑁 1 

can be solved optimally in strongly polynomial time. 2 

Concluding remark 3 

Evacuation problems that aim to keep maximum evacuees on the intermediate places 4 

besides a maximum evacuees into the specified safe destination are of particular interest 5 

to the evacuators. Intermediate places could be of limited capacities and prioritized with 6 

respect to facilities at shelter, distance from source, holding capacities, etc. In this paper 7 

we studied the maximum version of problem that aims to lexicographically maximize the 8 

evacuees entering a set of capacitated terminals with respect to a given prioritization. We 9 

proposed an efficient algorithm, based on temporally repeated flows, for the problem 10 

modeled on UPL network. We also applied this solution as a subroutine to solve LexQF 11 

problem. Moreover, we studied LexEAF problem with sufficient vertex capacities, and 12 

propose an efficient algorithm for UPL-TTSP network. Searching of efficient solutions for 13 

the problems with more general network settings would be future research work. Multi-14 

commodities flow problems with vertex capacities would also be interesting for research-15 

ers. 16 
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