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Abstract: Civil structures, infrastructures and lifelines are constantly threatened by natural1

hazards and climate change. Structural Health Monitoring (SHM) has therefore become an2

active field of research in view of online structural damage detection and long term maintenance3

planning. In this work we propose a new SHM approach leveraging a deep Generative Adversarial4

Network (GAN), trained on synthetic time histories representing the structural responses of both5

damaged and undamaged multistory building to earthquake ground motion. In the prediction6

phase, the GAN generates plausible signals for different damage states, based only on undamaged7

recorded or simulated structural responses, thus without the need to rely upon real recordings8

linked to damaged conditions.9

Keywords: Structural Health Monitoring; Machine Learning; Generative Adversarial Network.10

1. Introduction11

Bridges, power generation systems, aircrafts, buildings and rotating machinery are only12

few instances of structural and mechanical systems which play an essential role in the13

modern society, even if the majority of them are approaching the end of their original14

design life [1]. Taking into account that their replacement would be unsustainable from15

an economic standpoint, alternative strategies for early damage detection have been16

actively developed so to extend the basis service life of those infrastructures. Furthermore,17

the advent of novel materials whose long-term behaviour is still not fully understood18

drives the effort for effective Structural Health Monitoring (SHM), resulting in a saving19

of human lives and resources [1].20

SHM consists of three fundamental steps: (i) measurement, at regular intervals, of21

the dynamic response of the system; (ii) selection of damage-sensitive features from the22

acquired data; (iii) statistical analysis of those attributes to assess the current health state23

of the structure. To characterize the damage state of a system, the method relying on24

hierarchical phases, originally proposed by [2] represents the currently adopted standard.25

The latter prescribes several consecutive identification phases (to be tackled in order),26

namely: check the existence of the damage, the location of the damage, its type, extent27

and the system’s prognosis. Damaged states are identified by comparison with a reference28

condition, assumed to be undamaged. The detection of the damage location relies upon29

a wider awareness of the structural behaviour and the way in which it is influenced by30

damage. This information, along with the knowledge of how the observed features are31

altered by different kinds of damage, allows to determine the type of damage. The last32

two phases require an accurate estimation of the damage mechanisms in order to classify33

its severity and to estimate the Remaining Useful Life (RUL).34
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All the steps mentioned above rely on continuous data acquisition and processing to35

obtain information about the current health condition of a system. In the last few years,36

the concept of Digital Twin has emerged, combining data assimilation, machine learning37

and physics-based numerical Simulations [1], the latter being essential to completely38

understand the physics of the structure and damage mechanisms. A suitable tool able to39

extract main dominant features from a set of data is represented by neural networks [3],40

especially generative models such as Generative Adversarial Networks (GANs) [4] and41

Variational Autoencoders (VAEs) [5].42

In this paper, an application of the generative neural network RepGAN, proposed by [6],43

is presented in the context of SHM. Section 2 provides an overview on existing works.44

In Section 3, the application of RepGAN to Structural Health Monitoring is presented.45

In Section 4, extensive numerical results are illustrated, while Section 5 gathers some46

concluding remarks.47

2. Related work48

Generative Adversarial Networks [4] are well known due to their generative capability.
Given a multidimensional random variable X ∈ (RdX , EX ,PX )1 (whose samples are
collected in the data set S =

{
x(i)

}N
i=1

), with probability density function pX (X ), the
GAN generator attempts to reproduce synthetic samples x̂, sampled according to the
probability density function pG(X ) as similar as possible to the original data, i.e. a
GAN trains over data samples in order to match pG with pX . G maps a lower dimension
manifold (RdZ , EZ ,PZ) (with dZ < dX in general) into the physics space (RdX , EX ,PX ).
In doing so, G learns to pass the critic test, undergoing the judgement of a discriminator
D : RdX → [0, 1], simultaneously trained to recognize x̂(i) counterfeits. The adversarial
training scheme relies on the following two-players Minimax game:

{G;D} = arg min
G

max
D

V (D,G)

V (D,G) = EX∼pX
[lnD(X )] +EZ∼pZ

[ln(1−D(G(Z ))]
(1)

In practice, G is represented by a neural networkGθ and D by a neural network Dω , with
trainable weights and biases θ and ω , respectively. Moreover, V (D,G) is approximated
by the Empirical Risk function LS(ω ,θ)2 defined as:

{θ;ω} = arg min
θ

max
ω

LS(ω ,θ) =

= arg min
θ

max
ω

1
n

n∑
i=1

(
lnDω (x(i)) + ln(1−Dω (Gθ (z(i)))

) (2)

with z(i) sampled from a known latent space probability distribution pZ (for instance the
normal distribution N (0, I)). The generatorGθ induces a sampling probability pG(X ;θ)
so that, when optimized, passes the critic test, with D being unable to distinguish between
x(i) andGθ

(
z(i)
)
(i.e. D(x(i)) = 1

2 = D(Gθ

(
z(i)
)
). In other words, x(i) andGθ

(
z(i)
)

can be associated to the value of a categorical variable C, with two possible values: class
“d” (data) and class “g” (generated). x(i) and Gθ

(
z(i)
)
can be therefore sampled with

the mixture probability density pM = αχ(C = “d”) + (1− α)χ(C = “g”) with χ being
the indicator function and α = P (C = “d”) [7]. The optimum solution of the Minimax
game in Equation (2) induces a mixture probability distribution 1

2 (pC=“d” + pC=“g”) [4].
The saddle point of V (D,G) corresponds to the minimum (with the respect to to D) of
the conditional Shannon’s entropy S(C|X ) (see Appendix A). Moreover, minimizing the
conditional Shannon’s entropy S(C|X ) corresponds to the maximization of the Mutual

1 (RdX , EX ,PX ) denotes the probabilistic space with σ-algebra EX and probability measure PX
2 Empirical Loss depending on the data set S
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Information I(X ,C) = S(C)− S(C|X ) (see Appendix B), i.e. it corresponds to extract
X samples x(i) or x̂(i) that are indistinguishable (belonging to same class), with an
uninformative mapping X → C.
GANs proved useful in various applications such as generation of artificial data for
data-set augmentation, filling gaps in corrupted images and image processing. Especially,
deep convolutional generative adversarial networks (DCGANs) [8] proved useful in the
field of unsupervised learning. SHM could benefit from GANs as they improve the
generalisation performance of models, extracting general features from data, as well as
their semantics (damage state, frequency content, etc). However, the adversarial training
scheme in Appendix C does not grant a bijective mapping GθZ

: Z →X (decoder) and
F θX

: X → Z (encoder), which is crucial in order to obtain a unique representation of the
data into the latent manifold. Autoencoders have been developed for image reconstruction
so to learn the identity operator x̂(i) = I(x(i)) = GθZ

◦F θX
(x(i)). One can leverage

the encoder F θX
representation power to sample points ẑ(i) = F θX

(x(i)) belonging
to the latent manifold ΩZ and the decoder GθZ

to sample points x̂(i) = GθZ
(z(i))

belonging to the latent manifold ΩX (see Equation (1)). In order to make the learning
process of GANs stable across a range of data-sets and to realize higher resolution and
deeper generative models, Convolutional Neural Networks (CNNs) are employed to define
F θX

, GθZ
and the discriminators. F θX

and GθZ
induce sampling probability density

functions qZ|X = qXZ
pX

and pX|Z = pXZ
pZ

respectively. pX is usually unknown (depending
on the data-set at stake), but pZ can be chosen ad-hoc (such as, for instance, N (0, I))
in order to get a powerful generative tool for realistic data samples x̂(i). A particular
type of Autoencoders, called Variational Autoencoders (VAEs) was introduced by [5],
consisting in a probabilistic and generative version of the standard Autoencoder, where
the encoder F θX

infers the mean µZ and variance σ2
Z of the latent manifold. However,

the main contribution provided by VAEs is the straightforward approach that allows
to reorganize the gradient computation and reduce variance in the gradients labelled
reparametrization trick.
Adversarial Autoencoders (AAEs) [9] employ the adversarial learning framework in
Equation (1), replacing GθZ

(z(i)) by GθZ
◦F θX

(x(i)) and adding to the adversarial
GAN loss the Mean Square Loss ‖x(i) −GθZ

◦F θX
(x(i))‖2 as an optimization penalty,

in order to assure a good reconstruction of the original signal. However, AAEs do not
assure a bijective mapping between (RdX , EX ,PX ) and (RdZ , EZ ,PZ). In order to achieve
the bijection (in a probabilistic sense) between (x, ẑ) and (x̂, z) samples, the distance
between the joint probability distributions qXẐ = qẐ|XpX and pX̂Z = pX̂|ZpZ [10],
with the posteriors qẐ|X and pZ|X̂ must be minimized. A suitable distance operator
for probability distributions is the so called Jensen-Shannon distance DJS(qXẐ ||pX̂Z),
defined as [10]:

DJS(qXẐ ||pX̂Z) =
DKL(qXẐ‖pM ) +DKL(pX̂Z‖pM )

2 = S(pM )− S(X ,Z |M ) (3)

with DKL(p‖q) = S(p‖q)− S(p) being the Kullback-Leibler divergence (see Appendix B)
and pM =

qXẐ+pX̂Z
2 being the mixture probability distribution [7], i.e. the probability of

extracting
(
X , Ẑ

)
or
(
X̂ ,Z

)
from a mixed data set, with α = P (C = “d”) = 1

2 and the
entropy of the mixture probability S(M ) = ln 2. DJS(qXẐ ||pX̂Z) can be rewritten as:

DJS(qXẐ ||pX̂Z) = S(pM )− 1
2 (S(qXẐ) + S(pX̂Z)) =

= S(X ,Z )− S(X ,Z |M) = S(M)− S(M |X ,Z )
(4)
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The adversarial optimization problem expressed in Equation (1) can be seen as a mini-
mization of the Jensen-Shannon distance for C ∈ {“d”, “g”}:

DJS(qXẐ ||pX̂Z) + ln 2 = −S(M |X ,Z ) =

=
1
2E(X ,Ẑ )∼qXZ

[
D
(
X , Ẑ

)]
+

1
2E(X̂ ,Z )∼pXZ

[
1−D

(
X̂ ,Z

)] (5)

that can be combined with the Autoencoder model in order to obtain the following
expression [10,11]:

DJS(qXẐ ||pX̂Z) + ln 2 = DJS
(
qẐ|XpX ||pX̂|ZpZ

)
+ ln 2 =

=
1
2

[
EX∼pX

[
D
(
X ,F θX

(X )
)]

+EZ∼pZ

[
1−D

(
GθZ

(Z ),Z
)]] (6)

In this context, F θX
learns to map data into a disentangled latent space, generally

following the normal distribution, a good reconstruction is not ensured unless the cross-
entropy between X and Z is minimized too [12].
Another crucial aspect of generative models is the semantics of the latent manifold. Most
of the standard GAN models trained according to Equation (1) employs a simple factored
continuous input latent vector Z and does not enforce any restrictions on the way the
generator treats it. The individual dimensions of Z do not correspond to semantic
features of the data (uninformative latent manifolds) and Z cannot be effectively used in
order to perform meaningful topological operations in the latent manifold (e.g., describing
neighborhoods) and to associate meaningful labels to it. An information-theoretic
extension to GANs, called InfoGAN [13] is able to learn a meaningful and disentangled
representations in a completely unsupervised manner: a Gaussian noise Z is associated
to a latent code C to capture the characteristic features of the data distribution (for
classification purposes). As a consequence, the generator becomes GθZ

(Z ,C ) and the
corresponding probability distribution pG, whose Mutual Information with the respect
to to the latent codes C , namely I(C ,GθZ

(Z ,C )). The latter is forced to be high,
penalizing the GAN loss in Equation (1) with the variational lower bound LI(G,Q),
defined by:

LI (G,Q) = EC∼pC ,X∼pG
[lnQ(C |X )] + S(C ) = EX∼pG

EC∼pC|X

[
ln qC|X

]
+ S(C ) (7)

with qC|X being the probability distribution approximating the real unknown posterior
probability distribution pC|X (and represented by the neural network QZ). LI (G,Q) can
be easily approximated via Monte Carlo simulation, and maximized with the respect to
to qC|X and pG via reparametrization trick [13].

VInfoGAN(D,G,Q) = V (D,G)− λLI (G,Q) (8)

3. Methods49

With the purpose of learning a semantically meaningful and disentangled representation
of the SHM time-histories, we adopted in this study the architecture called RepGAN,
originally proposed in [6]. RepGAN is based on an encoder-decoder structure (both
represented by deep CNNs made of stacked 1D convolutional blocks), with a latent
space Z = [C ,S ,N ]. C ∈ [0, 1]dC a categorical variable representing the damage
class(es), with C ∼ pC which is generally chosen as a categorical distribution over dC
classes, i.e. pC = Cat(dC). S ∈ RdS is a continuous variable of dimension dS , with
S ∼ pS , generally pS = N (0, I) or the uniform distribution pS = U(−1, 1). Finally,
N ∈ RdN is a random noise of dN independent components, with N ∼ pN , generally
pN ∼ N (0, I). RepGAN adopts the conceptual frameworks of VAEs and InfoGAN,
combining the learning of two representations x→ ẑ → x̂ and z → x̂→ ẑ respectively.
The x→ ẑ → x̂ scheme must learn to map multiple data instances x(i) into their images
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(via encoder F θX
) in a latent manifold ẑ(i) = F θX

(x(i)) and back into a distinct instance
in data space x̂(i) = GθZ

◦F θX
(x(i)) (via decoder GθZ

), providing satisfactory results
in reconstruction. z → x̂ → ẑ maps multiple data latent instances into the same data
representation, in order to guarantee impressive generation and clustering performance.
Combining the two surjective mappings, in RepGAN the two learning tasks x→ ẑ → x̂

and z → x̂ → ẑ are performed together with shared parameters in order to obtain a
bijective mapping x ↔ z 3. This ability to learn a bidirectional mapping between the
input space and the latent space is achieved through a symmetric adversarial process.
The Empirical Loss function can be written as:

LS = DJS
(
pX̂|(C,S,N)||pX

)
+DJS

(
qĈ|X ||pC

)
+DJS

(
qŜ|X ||pS

)
+DJS

(
qN̂ |X ||pN

)
−EpC

[
Ep

X̂|C

[
ln qĈ|X

]]
−EpS

[
Ep

X̂|S

[
ln qŜ|X

]]
−EpX

[
Eq(C,S,N)|X

[
ln pX|(C,S,N)

]]
(9)

with the terms:50

• −EpC

[
Ep

X̂|C

[
ln qĈ|X

]]
minimizing the conditional entropy S(C |X )51

• −EpS

[
Ep

X̂|S

[
ln qŜ|X

]]
minimizing the conditional entropy S(S |X )52

are introduced in order to constrain a deterministic and injective encoding mapping (see53

Appendix B). On the other hand, the term54

• −EpX

[
Eq(C,S,N)|X

[
ln pX|(C,S,N)

]]
55

penalizes the learning scheme, in order to minimize the conditional entropy S(X |(C ,S ,N )),56

i.e. in order to grant a good reconstruction.57

Following the original RepGAN formulation:58

• −EpX

[
Eq(C,S,N)|X

[
ln pX|(C,S,N)

]]
is enforced penalizing the L1-norm |X −GθZ

◦59

F θX
(X )|60

• EpS

[
Ep

X̂|S

[
ln qŜ|X

]]
corresponds to the InfoGAN LI penalty, and it is maximized61

via the reparametrization trick (structuring the S branch of the encoder-decoder62

structure as a VAE, see [5])63

Finally, EpC

[
Ep

X̂|C

[
ln qĈ|X

]]
is maximized in a supervised way, considering the actual64

class of labeled signals x(i): x(i)d corresponding to a damaged structure and x(i)u to an65

undamaged one respectively. RepGAN provides an informative and disentangled latent66

space associated to the damage class C . The most significant aspect of the approach67

is the efficiency in generating reasonable signals for different damage states only on the68

basis of undamaged recorded or simulated structural responses. Both generators F θX
,69

GθZ
and discriminators Dω

X
, Dω

C
, Dω

S
and Dω

N
are parametrized via 1D CNN (and70

strided 1D CNN), following [8]. Our RepGAN model has been designed using the Keras71

API, and trained employing a Nvidia Tesla K40 GPU (on the supercomputer Ruche, the72

cluster of the Mésocentre Moulon of Paris Saclay University).73

4. Results and Discussion74

In the following, a case study is considered in order to prove the ability of the new75

architecture to achieve the three fundamental tasks of semantic generation, clustering and76

reconstruction. The reference example is a shear building subject to an earthquake ground77

motion whose signals are taken from the STEAD seismic database [14]. STEAD [14] is78

a high-quality, large-scale, and global data set of local earthquake and non-earthquake79

signals recorded by seismic instruments. In this work, local earthquake wave forms80

(recorded at local distances within 350 km of earthquakes) have been considered. Seismic81

3 In practice, the training of z → x̂→ ẑ is iterated five times more than the x→ ẑ → x̂
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data are constituted by three wave forms of 60 seconds duration, recorded in east-west,82

north-south, and up-dip directions respectively. The structure is composed by 39 storeys.83

The mass and the stiffness of each floor, in undamaged conditions, are respectively m84

= 625·103 kg and k = 8.33 ·107 kN
m . Damage is simulated through the degradation of85

stiffness. In the present case, the stiffness reduction has been set equal to 50% of the86

above mentioned value. The structural response of the system is evaluated considering87

one degree-of-freedom (dof) per floor. To take into account damping effects, a Rayleigh88

damping model has been considered.89

90

The following results have been obtained considering 100 signals in both undamaged and91

damaged conditions for a total of 200 samples, with separated training and validation92

data sets. Each signal is composed by 2048 time steps with dt = 0.04 s. The training93

process has been performed over 2000 epochs. The reconstruction capability of the94

proposed network has been evaluated through the Goodness-of-Fit (GoF) criteria [15]95

where both the fit in Envelope (EG) and the fit in Phase (FG) are measured. An example96

is shown in Figure 1. The values 9.17 and 9.69 respectively related to EG and PG testify97

the excellent reconstruction quality.
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Figure 1. Time–Frequency Goodness-of-Fit criterion: the black line represents the original
time-histories x(i) while the red time history depicts the result of the RepGAN reconstructions
GZ ◦ FX

(
x(i)
)
. GoF is evaluated between 0 and 10: the higher the score, the better is the

reconstruction. Frequency Envelope Goodness (FEG), Time–Frequency Envelope Goodness
(EG), Time Envelope Goodness (TEG), Frequency Phase Goodness (FPG), Time–Frequency
Phase Goodness (PG) and Time Phase Goodness (TPG).

98

The capability of reproducing signals for different damage scenarios can be appreciated99

from Figure 2 which presents the original structural response (black) and the corresponding100

generated one (orange) in both undamaged (left panel in Figure 2) and damaged (right101

panel in Figure 2) conditions. Regarding the classification capability, the classification102

report and the confusion matrix in Figure 3 highlight the fact that the model is able to103

correctly assign the damage class to the considered time histories.104

5. Conclusions105

In this paper, we introduce a SHM method based on a deep Generative Adversarial106

Network. Trained on synthetic time histories that represent the structural response of a107

multistory building in both damaged and undamaged conditions, the new model achieves108
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Figure 2. Examples of reconstructed signals for undamaged (left) and damaged (right) time-
histories. The black lines represent the original time-histories x(i)u and x(i)d respectively. The

orange time histories represent the result of the RepGAN reconstructions GZ ◦FX

(
x
(i)
u

)
and

GZ ◦FX

(
x
(i)
d

)
respectively. The proposed examples represent the normalized displacement of

the 1st floor of the building in object.
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Figure 3. Evaluation of the classification ability of the model. On the left panel, precision,
recall, f1-score and accuracy values are reported. A precision score of 1.0 for a class C means
that every item labelled as belonging to class C does indeed belong to class C, whereas a recall
of 1.0 means that every item from class C was labelled as belonging to class C. F1-score is
the harmonic mean of the precision and recall. Accuracy represents the proportion of correct
predictions among the total number of cases examined. On the right panel, the confusion matrix
allows to visualize the performance of the model: each row of the matrix represents the instances
in the actual class, while each column depicts the instances in the predicted class.

high classification accuracy (Figure 3) and satisfactory reconstruction quality (Figure109

1, Figure 2), resulting in a good bidirectional mapping between the input space and110

the latent space. However, the major innovation of the proposed method is the ability111

to generate reasonable signals for different damage states, based only on undamaged112

recorded or simulated structural responses. As a consequence, real recordings linked to113

damaged conditions are not requested. In our future work, we would like to extend our114

approach to real-time data. We will further consider a dataset constituted by a far larger115

number of time histories.116
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Appendix A. Shannon’s entropy124

• Shannon’s entropy for a probability density function pX :

S(X ) = S(pX) = EX∼pX

[
ln 1
pX

]
= −EX∼pX

[ln pX ] ≥ 0

• Conditional Shannon’s entropy for X and Z:

S(X|Z) = EZ∼pZ
[S(pX|Z)] = E(X ,Z )∼pXZ

[
ln
(

1
pZ|X

)]

S(X,Z) = S(Z|X)− S(X) = S(X|Z)− S(Z)

• Cross-entropy:

S(pXZ ||qXZ) = E(X ,Z )∼pXZ

(
ln
(

1
qXZ

))
= EX∼pX

[
EZ̃∼pZ|X

[
ln
(

1
qXZ

)]]
• Given a data set of identically independent distributed (i.i.d.) samples S ={

x(i)
}N
i=1

, the true yet unknown probability pX of extracting an instance x(i)

can be approximated by the likelihood pθX

{
x(i)

}N
i=1

, whose entropy is

S(pθX
) = − ln pθX

({
x(i)

}N
i=1

)
=

N∑
i

ln pθX

(
x(i)

)
Appendix B. Kullback-Leibler divergence125

• Kullback-Liebler divergence (non-symmetric):

DKL(pXZ‖qXZ) = E(X ,Z )∼pXZ

[
ln
(
pXZ

qXZ

)]
= −S(pXZ)+S(pXZ ||qXZ) ≤ S(pXZ ||qXZ)

DKL(pXZ‖qXZ) + S(X) = −S(X|Z)︸ ︷︷ ︸
EX∼pX [S(pZ|X )]

+S(pXZ ||qXZ) ≤ S(pXZ ||qXZ)

DKL(pXZ‖qXZ) + S(X) ≤ DKL(pXZ‖qXZ)126

• Mutual Information between X and X |Z :127

I(X ,Z ) = S(X )− S(X |Z ) ≥ 0

If pX|Z = pX ((X ,Z ) are independent) then I(X ,Z ) = 0. If pX|Z = δ(Z −f (X ))128

with f deterministic, then I(X ,Z ) = max(X ,Z ) I(X ,Z ) = S(X )129

• S(Z |X ) = −EZ∼pZ

[
EX∼pX|Z

[
ln pZ|X

]]
=130

= −EX∼pX

[
EZ∼pZ|X

[
ln pZ|X

qZ|X

]]
−EZ∼pZ

[
EX∼pX|Z

[
ln qX|Z

]]
=131

= −EX∼pX

[
DKL

(
pZ|X‖qZ|X

)]
−EZ∼pZ

[
EX∼pX|Z

[
ln qX|Z

]]
≤132

≤ −EZ∼pZ

[
EX∼pX|Z

[
ln qX|Z

]]
133

Appendix C. Generative Adversarial Networks (GAN)134

• GivenX belonging to the probabilistic space (ΩX , EX , PX ) with class C ∈ {“d”, “g”}135

(“d” corresponding to data and “g” to generated, and a discriminator D : ΩX →136

[0, 1] acting as an expert/critic:137

– P(C = “d”) = α; P(C = “g”) = 1− α138
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– P(C = “d”|x(i)) = D(x(i))139

– P(C = “d”|x(i)) = 1−D(G(z(i)))140

S(C|X ) = −EX∼pX

[
EC∼pC|X ln

(
pC|X

)]
= −EC∼pC

[
EX∼pX |C

[
ln
(
pC|X

)]]
S(C|X ) = −αEX∼pX |C=“d”

[
ln
(
pC=“d”|X

)]
− (1− α)EX∼pX |C=“g”

[
ln
(
pC=“g”|X

)]
S(C|X ) = −αEX∼pX

[ln(D(X ))]− (1− α)EZ∼pZ
ln(1−D(G(Z )))

For tuneable conditional probability distributions Dω :

max I(X ,C) ≤ S(C) + max−S(C|X ) = S(C) + min S(C|X )

max I(X ,C) ≤ S(C)+min
G

max
D

αEX∼pX
[ln(D(X ))](1−α)EZ∼pZ

ln(1−D(G(Z )))

Thus minimizing S+minG maxD S(C|X ) represents an upper bound for the Mutual141

Information between C and X , which is maximized by maximizing −S(C|X ). For142

an optimum training, D must not be able to discriminate between x(i) and x̂(i),143

therefore α = 1
2 .144

Appendix D. Standard Autoencoder [5]145

In the standard Autoencoder formulations [16,17], F and G are trained by maximizing
I(X ,Z ), namely:

{F ,G} = arg max
F ,G

I(X ,Z ) = arg min
F ,G

H(X |Z ) = arg min
F ,G

EX∼pX

[
EZ∼qZ|X

[
ln
(

1
pX|Z

)]]
(A1)

If the encoder and decoder are parametrized as neural networks, respectively as F θX

and GθZ
, the AE loss can be approximated by the Empircal Loss:

{θX ,θZ} = arg max
θX ,θZ

N∑
i=1

[
ln
(
pX|Z

(
x(i)|Z = F θX

(
x(i)

)))]
(A2)

Given the fact that the Gaussian distribution has maximum entropy relative to all
probability distributions covering the entire real line, the Empirical Loss in Equation (
A2) can be maximized by the Empirical Loss with pX|Z = N

(
GθZ

(Z ),
(
σ2)I):

{θX ,θZ} = arg max
θX ,θZ

N∑
i=1

1
2σ2 ‖x

(i) −GθZ
◦F θX

(
x(i)

)
‖2 + dZ

2 ln
(
2πσ2) (A3)
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