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Abstract: To meet the need for reliable real-time monitoring of civil structures, safety control1

and optimization of maintenance operations, this paper presents a computational method for the2

stochastic estimation of the degradation of the load bearing structural properties. Exploiting a3

Bayesian framework, the procedure sequentially updates the posterior probability of the damage4

parameters used to describe the aforementioned degradation, conditioned on noisy sensors5

observations, by means of Markov chain Monte Carlo (MCMC) sampling algorithms. To enable6

the analysis to run in real-time or close to, the numerical model of the structure is replaced with a7

data-driven surrogate used to evaluate the conditional likelihood. The proposed surrogate model8

relies on a multi-fidelity (MF) deep neural network (DNN), mapping the damage and operational9

parameters onto approximated sensor recordings. The MF-DNN is shown to effectively leverage10

information between multiple datasets, by learning the correlations across models with different11

fidelities without any prior assumption, ultimately alleviating the computational burden of the12

supervised training stage. The low fidelity (LF) responses are approximated by relying on proper13

orthogonal decomposition for the sake of dimensionality reduction, and a fully connected DNN.14

The high fidelity signals, that feed the MCMC within the outer-loop optimization, are instead15

generated by enriching the LF approximations through a deep long short-term memory network.16

Results relevant to a specific case study demonstrate the capability of the proposed procedure to17

estimate the distribution of damage parameters, and prove the effectiveness of the MF scheme in18

outperforming a single-fidelity based method.19

Keywords: structural health monitoring; Markov chain Monte Carlo; deep learning; multi-fidelity;20

reduced order modeling; damage identification.21

1. Introduction22

Civil structures and infrastructures are critical for the life of the world population23

and play a strategic role for the global economy [1]. Aging and ever-increasing extreme24

loading conditions threaten existing and new structural systems, stressing the need25

of real-time structural health monitoring (SHM) procedures to detect and identify any26

deviation from the damage-free baseline [2].27

Vibration-based SHM techniques investigate the structural health by recording and28

analyzing the vibration response (e.g., acceleration or displacement multivariate time29

series) of the monitored structure. Two competitive SHM approaches can be formally30

distinguished [3]: the model-based one, e.g., [4,5], and the data-based one, e.g., [6,7]. The31

former is usually implemented through an updating strategy of a physics-based model32

on the basis of measured experimental data, which attempts to estimate the location and33

the extent of the occurred structural changes. On the other hand, data-driven methods34

are based on a Machine Learning (ML) paradigm that, once trained, can be used as a35

black-box tool. ML systems automatically learn how the features, originated from the36

Version September 7, 2021 submitted to Proceedings https://www.mdpi.com/journal/proceedings

https://www.mdpi.com
https://orcid.org/0000-0003-0027-9788
https://orcid.org/0000-0001-8277-2802
https://orcid.org/0000-0001-5111-9800
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/proceedings


Version September 7, 2021 submitted to Proceedings 2 of 8

recorded data, are statistically correlated with the sought damage patterns [8]. After the37

advent of Deep Learning (DL) [9], that can incorporate the selection and extraction of38

optimized features into the end-to-end learning processes, the feature engineering stage39

has been progressively automatized.40

This work proposes a non-parametric output-only approach to the damage local-41

ization problem (see for instance [10,11]), leveraging a synergic combination of Multi-42

Fidelity (MF) data-driven meta-modeling and Bayesian parameter identification. The43

probability distribution of the unknown damage parameters is approximated through a44

Markov chain Monte Carlo (MCMC) sampling algorithm.45

MCMC has been applied in Bayesian model updating and model class selection46

in structural mechanics (see, e.g., [12]) as well as in SHM (see, e.g., [13]). In this work,47

MCMC is used to construct a Markov chain of the sought damage parameters, whose48

limit distribution is the target probability distribution. The probability distribution is49

sequentially updated by exploring the support of the damage parameters with a density50

of steps proportional to the unknown posterior distribution. The sampling acceptance51

is governed by the evidence of the current parameters to represent sparse dynamic52

response measurements, as provided by a sensors network, by means of a data-driven53

surrogate model.54

Because handling FE simulations within a MCMC analysis is computationally55

impractical, a FE model capable of simulating the effect of damage on the structural56

response is adopted only to build labelled datasets of vibration recordings for known57

damage positions (see for instance [14]). A data-driven surrogate model is instead58

adopted to map operational and damage parameters to the associated vibration signals59

in place of the FE model. Such surrogate is based on a multi-fidelity deep neural network60

(MF-DNN) trained on synthetic data of multiple fidelities, a ML paradigm adopted and61

extended for instance in [15,16]. Specifically, a limited amount of high fidelity (HF) data62

and a lot of cheaper low fidelity (LF) data are considered. This type of meta-modeling is63

useful to alleviate the high demand during training of, potentially expensive to collect,64

HF data. Indeed, the LF data supply useful information on the trends of HF data,65

allowing the MF-DNN to enhance the prediction accuracy only leveraging few HF data66

in comparison to the single-fidelity method [17].67

2. SHM Methodology68

The proposed methodology is detailed as follows. The composition of the datasets69

used to train the surrogate model is specified in Sec. 2.1, the numerical models behind70

these datasets are discussed in Sec. 2.2, the MF-DNN surrogate model is described in71

Sec. 2.3, and the setup of the MCMC analysis used for the sake of damage localization is72

explained in Sec. 2.4.73

2.1. Datasets definition74

The LF and HF datasets, respectively DLF and DHF, are built from the assembly of
ILF and IHF instances, as follows

DLF = {(xLFi , ULF
i )}ILF

i=1 , DHF = {(xHFj , UHF
j )}IHF

j=1 . (1)

Each LF instance is provided by a LF model of the structure to be monitored in un-75

damaged conditions, and consists of the input parameters xLFi ∈ RNLFpar defining the76

operational conditions, i.e. the loadings acting on the structure during the i-th instance,77

and the relative LF vibration recordings ULF
i (xLFi ) = [uLF

1 , . . . , uLF
Nu
]i ∈ RNu×L shaped as78

Nu arrays of length L. The HF counterpart is provided by a HF model of the same struc-79

ture, which also accounts for the presence of structural damage and internal damping.80

Each HF instance consists of the input parameters xHFj ∈ RNHFpar , defining the operational81

and damage conditions, with NHFpar > NLFpar, and the associated HF vibration recordings82

UHF
j (xHFj ) ∈ RNu×L. The structural damage is modeled as a selective reduction of the83
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material stiffness, applied to a subdomain identified by the spatial coordinates of its84

center θj ⊂ xHFj . For simplicity, the same sampling frequency and monitored degrees of85

freedom (dofs) are considered for the two fidelities, but there are no restrictions on this86

respect. Each instance refers to a time window (0, T), short enough to assume frozen87

operational, environmental, and damage conditions. In the reminder of the paper the88

indexes i, j will be dropped.89

2.2. Datasets population90

The monitored structure is modeled as an elastic continuum discretized in space by
means of a FE triangulation. The HF numerical model results from the semi-discretized
form of the elasto-dynamic problem defined over the FE mesh. On the other hand, in
order to ease the construction of a large LF dataset, a projection-based model order
reduction strategy for parametrized systems is adopted to build the LF model, see
e.g. [10]. To this aim, the reduced basis method [18] relying on the Proper Orthogonal
Decomposition (POD)-Galerkin approach is considered. Hence, the LF approximation
is obtained as a linear combination of POD-basis functions, yet not accounting for the
presence of damage and structural damping. The LF and HF numerical models read
respectively as

MRd̈R(t) + KRdR(t) = fR(xLF) , t ∈ (0, T)
dR(0) = W>d0
ḋR(0) = W>ḋ0 ,

(2)


Md̈(t) + C(xHF(θ))ḋ(t) + K(xHF(θ))d(t) = f(xHF) , t ∈ (0, T)
d(0) = d0
ḋ(0) = ḋ0 ,

(3)

where the superscripts L and H are omitted from all the arrays for simplicity, while91

the superscript R stands for reduced. Having denoted by: t ∈ (0, T) the time co-92

ordinate; d(t) ∈ RM, ḋ(t) ∈ RM and d̈(t) ∈ RM the vectors of nodal displace-93

ments, velocities and accelerations, respectively, whereas M is the number of dofs;94

M ∈ RM×M the mass matrix; C(xHF(θ)) ∈ RM×M the damping matrix, modeled as95

Rayleigh damping for mathematical convenience; K(xHF(θ)) ∈ RM×M the stiffness96

matrix; f(xLF), f(xHF) ∈ RM the vectors of nodal forces; d0 and ḋ0 the initial conditions97

at t = 0; W = [w1, . . . , wMR ] ∈ RM×MR the matrix gathering the MR � M retained98

POD-basis functions; MR, KR, fR(xLF), dR(t) the reduced arrays, playing the same role99

of the FE matrices but with dimension ruled by MR instead of M. It has to be noted that,100

even if in this case the two fidelities differ through the presence of structural damage and101

viscous damping in the HF model, the proposed computational framework is general102

and can be arbitrarily adapted to different modeling choices.103

The datasets DLF and DHF are populated accordingly to Eq. (1) by sampling the104

parametric input spaces, respectively defined by a uniform probability distribution over105

xLF and xHF, via latin hypercube sampling. The relevant vibration recordings ULF and106

UHF are extracted from dLF and dHF, respectively, through a Boolean operation.107

2.3. MF-DNN surrogate model108

The MF-DNN NNMF is composed of a LF neural network NNLF, trained on low-
cost data, which is used as baseline model, and a HF neural network NNHF, trained on
few HF data, which is used to adaptively learn the correlation between LF and HF data.
The overall evaluation of NNMF reads as

ÛHF = NNMF(xHF, xLF) = NNHF(xHF, ÛLF) , ÛLF = reshape[Y(
1
ω
�NN LF(xLF))] .

(4)
Here: Y = [y1, . . . , yMLF

] ∈ RLconcat×MLF , with Lconcat = L× Nu, is a matrix gathering109

MLF POD-basis functions built upon DL and used to compress the LF data in order110
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to ease the complexity of NNLF; NNLF is a fully connected DNN, mapping the LF111

input parameters onto the POD-basis coefficients; ω ∈ RMLF is a vector of numbers112

linearly decreasing from 1 to 0.2, used to weight the regression over the POD-basis113

coefficients by their relative importance; � denotes the Hadamard product; the reshape114

operation is used to recast the reconstructed LF signals from a single vector of size115

Lconcat into Nu arrays of length L; NNHF is a long short-term memory (LSTM) NN that,116

as more appropriate to solve time-dependent problems, is adopted to map the HF input117

parameters and the approximated LF signals onto the HF signals.118

2.4. Damage localization via MCMC119

Accordingly to the Bayes’ rule, the posterior probability density function (pdf) of
the damage parameters θ, viewed as random variables, conditioned on the observed
signals UEXP

1,...,Nobs is

p(θ|UEXP
1,...,Nobs ,NN MF) =

p(UEXP
1,...,Nobs |θ,NN MF)p(θ,NN MF)∫

p(UEXP
1,...,Nobs |θ,NN MF)p(θ,NN MF) dθ

, (5)

where: p(θ,NN MF) is the prior of θ; p(UEXP|θ,NN MF) is the likelihood of the evidence,
which measures the goodness of fit of NN MF to UEXP given the parameters θ. By
assuming that the uncertainties follow a Gaussian distribution, the likelihood function
can be assumed Gaussian too thanks to the central limit theorem:

p(UEXP
1,...,Nobs |θ,NN MF) =

Nobs

∏
k

1
(
√

2π)L
√
|Σc|

exp

(
−

1
L ∑L

τ=1[(e
>
τ ∆k)

>Σ−1
c (e>τ ∆k)]

2

)
.

(6)
Here: Nobs is the batch size of the processed observations; ∆k = UEXP

k − ÛHF(xHF(θ), xLF)120

is the prediction error relevant to the k-th observation, assumed independent between121

different time instants and modeled as a Gaussian random vector with zero mean and122

covariance matrix Σc ∈ RNu×Nu , which describes the spatial correlation of prediction123

errors due to modeling errors and measurement noise (for further details see e.g. [19]);124

eτ is a Boolean vector with a single non-zero entry in τ-th position, used as row extractor125

for the relevant time step.126

To avoid the expensive computation of the integral at the denominator of Eq. (5), a127

MCMC sampling algorithm is adopted to approximate the posterior pdf128

p(θ|UEXP
1,...,Nobs ,NN MF). Specifically, the posterior pdf is sequentially updated accord-129

ingly to the Metropolis-Hastings (MH) algorithm [20]. The MH algorithm simulates130

a chain of θ samples distributed according to the posterior, with each sample only de-131

pending on the previous one. This generate a random walk in the space of θ, where132

each point is hit with a frequency proportional to its probability. Hence, the stationary133

distribution of the Markov chain, under the assumption of ergodicity, asymptotically134

approaches the target pdf.135

Let q(ξ|θ) be the considered proposal probability density function and136

δ(θ) = p(UEXP
1,...,Nobs |θ,NN MF)p(θ,NN MF) for the sake of simplicity. The MH algorithm137

recursively simulate the next Markov chain sample θk+1 from the current sample θk,138

with k = 1, . . . , Lchain, as follows [21]: sample a candidate ξ from q(ξ|θk); compute the139

ratio α = δ(ξ)q(θk |ξ)
δ(θk)q(ξ|θk)

; accept the candidate ξ with probability min{1, α} and store it as140

next state of the chain, i.e. θk+1 = ξ, otherwise reject it and keep the current state of the141

chain, i.e. θk+1 = θk.142

After Lchain states are evaluated, the burn-in period of the chain (i.e. the initial
transitory phase) is removed to eliminate the initialization effect. The resulting chain is
ultimately thinned up to L̃chain = Lchain

kT
, with kT a small fixed integer, in order to remove

dependencies among consecutive samples. In that way a sufficiently long stable Markov
chain is obtained. The target distribution can be approximated via histograms and the
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posterior expected values and covariance can be approximated with the empirical mean
and covariance of the θ1, . . . , θL̃chain samples:

µθ = E(θ|UEXP
1,...,Nobs ,NN MF) ≈

1
L̃chain

L̃chain

∑
l=1

θl , (7)

cov(θ|UEXP
1,...,Nobs ,NN MF) ≈

1
L̃chain − 1

L̃chain

∑
l=1

[θl − µθ][θl − µθ]
> . (8)

3. Virtual experiment143

The proposed method is validated on the digital twin shown in Fig. 1. The HF144

model in Eq. (3) is obtained from a FE discretization resulting in M = 4659 dofs and145

integrated in time using the Newmark method. The structure is made of concrete,146

whose mechanical properties are: Young’s modulus E = 30 GPa; Poisson’s ratio ν = 0.2;147

density ρ = 2500 kg/m3. The structure is excited at the tip by a distributed load q(t),148

acting on an area of (0.3× 0.3) m2, as depicted in Fig. 1. The load q(t) varies in time149

according to q(t) = Q sin (2π f t), where Q ∈ [1, 5] kPa and f ∈ [10, 60]Hz respectively150

denote the load amplitude and frequency, collected as xLF = (Q, f )>. Damage is151

introduced by reducing the material stiffness by 25% within the subdomain Ω, which152

is a box (0.3× 0.3× 0.4) m3 as depicted in Fig. 1. The target position of this reduction153

is given by the coordinates of its center and can be identified with a single abscissa154

θΩ ∈ [0.15, 7.55]m running along the axis of the structure. Hence, the input parameters155

of the HF part are collected as xHF = (Q, f , θΩ)>. Also the Rayleigh damping matrix,156

which account for a 5% damping ratio on the first 4 structural modes, is affected by the157

damage through the stiffness matrix. Synthetic displacement recordings un(t), with158

n = 1, . . . , Nu, are collected from Nu = 8 dofs at the bottom surface, mimicking a159

monitoring system arranged as depicted in Fig. 1. Each recording lasts for a time interval160

(0, T = 1 s), providing L = 200 data points.

Figure 1. Physics-based digital twin of the monitored structure.
161

The reduced-order model in Eq. (2), i.e. the LF model used to construct DLF, has162

been built performing a POD upon 40.000 snapshots in time, collected while exploring163

the parametric input space xLF. 14 POD-bases are selected and stored in matrix W, in164

place of the original 4659 dofs, after having fixed a suitable tolerance on the energy norm165

of the reconstruction error (tolPOD = 10−3), for further details see, e.g., [10,14].166

For the training of the surrogate model in Eq. (4), ILF = 10.000 and IHF = 1.000167

instances have been collected from the LF and HF model, respectively. Concerning the168

compression of the LF data for the sake of prior dimensionality reduction, 104 POD-bases169

have been selected (tolPOD = 10−3) and stored in matrix Y, in place of the 1600 data170

points featured by each instance.171
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The mean squared error and the mean absolute error have been used as loss172

functions for the training of NNLF and NNHF, respectively, together with the Adam173

optimization algorithm [22]. The implementation has been carried out through the174

Tensorflow-based Keras API [23], running on an Nvidia GeForce RTX 3080 GPU card.175

(a)

(b) (c)

Figure 2. Reconstruction capacity of NNMF: (a) regression over the POD-basis coefficients relative to a compressed LF
signal; (b) decompressed LF signal; (c) regression over the HF signal.

An example of the reconstruction capabilities achieved by the surrogate model176

is shown in Fig. 2 for the monitored gdl u8(t), where the outcome of the regression177

over the POD-basis coefficients, ruled by the NNLF, and the corresponding expanded178

LF signal are reported together with the signal enrichment, provided by the NNHF.179

To quantify the accuracy of the predicted signals, the Pearson correlation coefficients180

(PCC) between predicted and ground truth HF signals are adopted as a measure181

of fitness. The PCC coefficients are evaluated with respect to 40 testing instances182

generated with the HF model while exploring the parametric input space xHF. The183

minimum PCC value over the 40 testing instances for each monitored channel is re-184

spectively {0.983; 0.988; 0.994; 0.995; 0.998; 0.998; 0.998; 0.998}, which largely validate185

the performance of the surrogate model. The other way around, if the NNHF is em-186

ployed without being coupled with the NNLF, the maximum PCC value drops to187

{0.605; 0.603; 0.601; 0.601; 0.791; 0.735; 0.709; 0.696}, showing the utility of the MF setting188

that outperforms the single-fidelity based method.189

In the absence of experimental data, the Bayesian estimation of the damage param-190

eter θΩ is simulated by considering pseudo-experimental instances, generated with the191

HF model, that have been corrupted by adding independent, identically distributed192

Gaussian noise, featuring a signal-to-noise ratio equal to 80 to each vibration recording.193
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Batches of Nobs = 3 observations relative to the same damage condition but different194

operational conditions are processed during the evaluation of the likelihood in Eq. (6).195

The prior pdf p(θΩ,NN MF) is taken as uniform, while, to account for the bounded196

domain in which θΩ can fall, a truncated Gaussian centered on the last accepted state is197

considered for the proposal q(ξ|θΩ). The adaptive Metropolis [24] algorithm is adopted198

in order to ease the calibration of the proposal distribution, enabling its covariance to be199

tuned on the basis of past samples as the sampling evolves. The MCMC algorithm is200

run for 5000 samples, the first 500 of which are removed to get rid of the burn-in period.201

The obtained chain is ultimately thinned by discarding 3 samples over 4 to remove202

dependencies among consecutive samples.203

Two examples of MCMC analyses are reported in Fig. 3, showing the generated204

Markov chains alongside the estimated posterior mean and credibility intervals. In both205

cases, the damage parameter θΩ, here normalized between 0 and 1, is properly identified.206

It has to be noted that the larger uncertainty in the second case is somehow expected;207

indeed, given the structural layout and the placing of the sensors, the sensitivity of208

measures to damage positions far apart from the clamped side is smaller.209

(a) (b)

Figure 3. Examples of MCMC analyses.

4. Conclusions210

This paper has presented a stochastic approach for SHM, here applied to the prob-211

lem of damage localization in case of slow damage progression. The presence of damage212

has been postulated as already detected, and only the localization task has been ana-213

lyzed. The Bayesian identification of damage parameters is achieved through a MCMC214

sampling algorithm, adopted to approximate their posterior distribution conditioned on215

a set of measurements. Few investigations are present in literature involving the use of216

MCMC for the health monitoring of civil structures, and this is the first one considering217

a MF-DNN surrogate model to accelerate the computation of the conditional likelihood.218

The surrogate model learns from simulated data of multiple fidelities, i.e. few HF data219

and several inexpensive LF data, such to alleviate the computational burden of the220

supervised training stage. The method has been assessed on a numerical case study,221

showing remarkable accuracy and proving to be insensitive to the effect of measurement222

noise and varying operational conditions.223

Besides the need of validating the proposed methodology within a suitable exper-224

imental setting, the next studies will extended the Bayesian identification also to the225

parameters controlling the operational conditions. Moreover, a usage monitoring tool226

powered by a suitable data-driven paradigm will be considered to provide useful prior227

knowledge as opposite to an informative flat prior.228
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