
Algorithms for finding minimum dominating set in a graph

Ernesto Parra Inza 1, Frank Angel Hernández Mira 2,
Nodari Vakhania 1* and José Maŕıa Sigarreta Almira 2

1 Centro de Investigación en Ciencias UAEMor; Universidad Autónoma del Estado de Morelos, Av.
Universidad 1001, Col.Chamilpa, post code 62209, Cuernavaca, Morelos, México.

2 Facultad de Matemáticas UAGro; Universidad Autónoma de Guerrero, Carlos E. Adame No.54,
Col.Garita, post code 39650, Acapulco, Guerrero, México.

∗ Corresponding author: nodari@uaem.mx

1 / 24

Abstract

In a simple connected graph G = (V , E), a subset of vertices S ⊆ V is a dominating set in graph
G if any vertex v ∈ V \ S is adjacent to some vertex x from this subset. It is known that this
problem is NP-hard, and hence there exists no exact polynomial-time algorithm that finds an
optimal solution to the problem. This work aims to present an exact enumeration and heuristic
algorithm that can be used for large-scale real-life instances. Our exact enumeration algorithm
begins with specially derived lower and upper bounds on the number of vertices in an optimal
solution and carries out a binary search within the successively derived time intervals. The
proposed heuristic accomplishes a kind of depth-first search combined with breadth-first search
in a solution tree. The performance of the proposed algorithms is far better than that of the
state-of-the-art ones. For example, our exact algorithm has solved optimally problem instances
with order 300 in 165 seconds. This is a drastic breakthrough compared to the earlier known
exact method that took 11036 seconds for the same problem instance. On average, over all the
100 tested problem instances, our enumeration algorithm is 168 times faster.

Keywords: graph; dominating set; enumeration algorithm; heuristic; time complexity.

ABSTRACT 2 / 24

Outline

1 INTRODUCTION

2 METHODS
Implicit enumeration
A combined DFS and BFS search

3 RESULTS AND DISCUSSION

4 CONCLUSIONS

ABSTRACT 3 / 24

Introduction

In a simple connected graph G = (V ,E) with |V | = n vertices and |E | = m edges,
a subset of vertices S ⊆ V is a dominating set in graph G if any vertex v ∈ V is
adjacent to some vertex x from this subset (i.e., there is an edge (v , x) ∈ E)
unless vertex v itself belongs to set S. Any subset S with this property will be
referred to as a feasible solution, whereas any subset of vertices from set V will be
referred as a solution. The number of vertices in a solution will be referred to as
its size (order). The objective is to find an optimal solution, a feasible solution
with the minimum possible size γ(G).

INTRODUCTION 4 / 24

Since the problem is known to be NP-hard, there exists no exact algorithm that
finds an optimal solution in polynomial time.

In this work, we aim to develop an exact implicit enumeration algorithm that can
be used in real-life scenarios with graphs with a considerable number of vertices.

INTRODUCTION 5 / 24

Implicit enumeration
Initially, we create a feasible solution using the approximation algorithm from [10].
This solution defines the initial upper bound U on the size of a feasible solution,
whereas the initial lower bound L is obtained based on the following known results.

Theorem
[9] γ(G) ≥ n

∆(G)+1 .

Theorem
[9] γ(G) ≥ 2r(G)

3 and γ(G) ≥ d(G)+1
3 .

Theorem
[9] |Supp(G)| ≤ γ(G) ≤ n − |Leaf (G)|.

METHODS Implicit enumeration 6 / 24

Implicit enumeration

The next corollary is an immediate consequence of the Theorems 1, 2 and 3.

Corollary

L = max{ n
∆(G)+1 ,

2r(G)
3 , d(G)+1

3 , s} is a lower bound on the number of vertices in a
minimum dominating set.

METHODS Implicit enumeration 7 / 24

Implicit enumeration

Procedure Next(ν)

For each trial ν ∈ [L,U], the solutions of size at most ν are generated in a special
priority order that is intended to help in a faster convergence to a feasible
solution. Heuristic considerations are used to determine that order.
Procedure Next(ν) determines the (next) solution σh(ν) of size ν at iteration h.
An auxiliary subroutine Procedure Priority LIST () generates a priority list of
vertices which is used for the creation of solution σh(ν). While creating this list,
the support and leaf vertices are ignored: by Theorem 3, for every iteration h, all
vertices from set Supp(G) can be included in solution σh(ν) and no vertex from
set l(G) is to be part of it.

METHODS Implicit enumeration 8 / 24

Implicit enumeration

METHODS Implicit enumeration 9 / 24

Implicit enumeration

Procedure Next(ν) verifies the feasibility of each solution σh(ν) generated.

Remark
The feasibility of every generated solution of a given size is verified in time O(n).

Let s = |Supp(G)| and l = |l(G)|. Now, with the above mentioned and Remark 1,
we obtain the following lemma.

Lemma
The time complexity of Algorithm BDS is

O
(

n log(n
2 − 1)

(
n

n/4

))
.

METHODS Implicit enumeration 10 / 24

A combined DFS and BFS search

Our second algorithm DBS (Depth Breadth Search), combines depth-first search
with a breadth-first search in solution tree T , a binary tree of depth n, in which
vertex v i is associated with level i . The path from the root to a leaf uniquely
defines a solution in that tree. With each solution, a binary number with n digits
is naturally associated, with 0 entry in position i if vertex v i does not pertain to
that solution, and with the entry 1 otherwise. Every path in tree T from the root
to a leaf represents a binary number of n digits and the corresponding solution. If
the edge of this path at level i of the tree is marked as 0 then vertex v i does not
belong to that solution, and if that edge is marked as 1 then it belongs to the
solution.

METHODS A combined DFS and BFS search 11 / 24

Given solution σ = (v 1, v 2, . . . , v U0) obtained by the greedy algorithm from [10],
we define an auxiliary parameter β = bα(U − s)c+ s, for 0 < α < 1, as the size of
a base solution σ(β) (U is the current upper bound, initially it is U0,
s = |Supp(G)|). A base solution is constructed by the procedure and serves as a
basis for the construction of the following larger sized solutions sharing the β
vertices with solution σ(β). In case none of these extensions of solution σ(β) turn
out to be feasible, the current base solution is replaced by another base solution of
size β and the search similarly continues.

METHODS A combined DFS and BFS search 12 / 24

The set of vertices in a base solution is determined according to one of the
following alternative rules:

1 The first β vertices (v 1, v 2, . . . , vβ) from solution σ.
2 Randomly selected β vertices from solution σ.
3 Randomly selected β vertices from set V \ l(G).

METHODS A combined DFS and BFS search 13 / 24

Each base solution is iteratively extended by one vertex per iteration and each of
these extensions are checked for feasibility until either (i) one of them turns out to
be feasible or (ii) an extension of size U − 1 is created. In the latter case (ii) if the
corresponding extension of size U − 1 is not feasible, the next base solution with
size β is constructed and the procedure is repeated for the newly created base
solution. In the former case (i), the current lower bound is updated;
correspondingly, the parameter β is also updated, the first base solution of the
new size β is created and the procedure is again repeated for this newly created
base solution. Procedure DBS halts if the extensions of all the base solutions of
the current size β were tested and none of them turned out to be feasible. Then
γ(G) = U and the procedure return the corresponding feasible solution of size U,
which is minimal.

METHODS A combined DFS and BFS search 14 / 24

The definition of the upper bound U, lower bound L, and the fact that none of
the solutions of size lower to U − 1 is feasible, immediately follows from the
following remark.

Remark
The Procedure DBC returns a minimal dominating set.

Remark
If none extension of all base solutions of current size β is feasible and β > L, then
β < γ(G) ≤ U.

The Procedure DBS does not guarantee the optimal solution, but it allows to
improve the solutions of [10]. Some computational experiments are discussed in
Table 3.

METHODS A combined DFS and BFS search 15 / 24

Results and Discussion

We have implemented the algorithms in C++ using Visual Studio for Windows 10
(64 bits) on a personal computer with Intel Core i7-9750H (2.6 GHz) and 12 GB
of RAM DDR4. The order and the size of an instance were generated randomly
utilization function random(). To complete the set E(G), each new edge was
added in between two yet non-adjacent vertices randomly until the corresponding
size was attained. The results for the instances are shown in Table 1. We can
observe a significant difference in the time of the algorithms tested. We have
obtained that for 100% of the analyzed instances, with a density greater or equal
to 0.5, Time(BDS) ≈ 1

168 Time(MSC). The Time(A) function returns the time in
seconds that it takes for algorithm A to give a response.

RESULTS AND DISCUSSION 16 / 24

Table: Graphs with density ≈ 0.5.

No. |V (G)| |E (G)| Time
BDS (s)

Time
MSC (s)

Lower Bounds
γ(G) Upper Bounds

n
∆(G)+1

d+1
3

2r
3 |Supp(G)| |S| n −∆(G)

1 201 8081 31.0313 1136.67 2 1 1 2 5 5 103
2 207 8569 35.9424 1361.77 2 1 1 1 5 6 105
3 209 8735 37.3502 1454.44 1 2 1 1 5 5 104
4 215 9243 42.9108 1810.09 1 1 1 1 5 5 103
5 217 9415 42.881 1892.35 1 1 1 3 5 5 107
6 221 9765 49.91 2011.15 2 1 1 1 6 7 115
7 226 10211 51.2046 2278.89 2 1 1 1 5 5 114
8 230 10575 4.6399 2537.6 1 2 1 4 5 5 111
9 233 10852 57.8398 2793.59 2 1 1 1 5 6 118

10 238 11322 65.053 3093.64 2 1 1 1 5 6 123
11 242 11705 67.0996 3463.78 1 1 1 2 5 5 119
12 250 12491 83.1936 4065.44 1 2 1 1 5 5 125
13 257 13199 93.983 4919.85 2 1 1 1 5 6 131
14 264 13927 112.518 5925.73 2 1 1 2 5 5 135
15 269 14459 112.609 6102.11 1 1 1 1 5 6 134
16 275 15111 114.446 6887.98 2 1 1 1 5 6 144
17 283 16002 418.72 8040.4 1 1 1 1 5 6 141
18 290 16803 148.712 9215.59 2 1 1 1 5 5 152
19 296 17505 155.861 10269.4 2 1 1 1 5 6 152
20 300 17981 165.301 11035.8 2 1 1 1 5 5 151

RESULTS AND DISCUSSION 17 / 24

When analyzing graphs with a density of approximately 0.2, the execution times of
the analyzed algorithms behave differently from the cases analyzed previously. In
low-density instances, the MSC algorithm is faster than the algorithm proposed in
this paper. The results of the experiments, with this type instance, can be seen in
Table 2.

RESULTS AND DISCUSSION 18 / 24

Table: Graphs with density ≈ 0.2.

No. |V (G)| |E (G)| Time
BDS (s)

Time
MSC (s)

Lower Bounds
γ(G) Upper Bounds

n
∆(G)+1

d+1
3

2r
3 |Supp(G)| |S| n −∆(G)

1 50 286 1.89587 0.616285 2 1 1 2 6 6 33
2 60 357 3.13747 0.715912 2 1 1 1 6 7 40
3 70 524 7.04679 1.46234 2 1 1 1 6 6 45
4 80 678 12.5997 2.81906 2 1 1 1 6 7 53
5 90 842 390.903 5.18101 3 1 1 1 7 8 63
6 100 1031 803.741 8.31738 2 1 1 2 7 7 67
7 101 1051 804.208 8.69229 3 1 1 1 7 7 70
8 106 1154 1143.92 10.8275 2 1 1 1 7 8 71
9 113 1306 1594.92 16.2542 3 1 1 1 7 7 77

10 117 1398 3364.4 19.955 3 1 1 2 8 9 84
11 121 1493 2240.49 23.1156 3 1 1 1 7 7 87

RESULTS AND DISCUSSION 19 / 24

The computational experiments with the Procedure DBS showed that in 98.62%
of the analyzed instances the solution given by [10] was improved. Table 3 shows
some of these results.

Table: Results Procedure DBS.

No. |V (G)| |E (G)| |S| Solution 1 Solution 2
β σi (β) generates Time(s) |DS| β σi (β) generates Time(s) |DS|

1 600 84557 12 4 43 37.815 11
2 610 87490 12 4 3225 2876.67 11
3 620 90472 13 3 21 20.953 12 3 6 25.745 11
4 630 93505 13 4 107 90.532 12 3 35266 29750 11
5 640 96587 13 4 22 23.207 11
6 650 102571 9 2 No solution found
7 660 105798 10 3 4080 4635.46 8
8 670 109076 9 2 18 24.966 8
9 680 109417 12 4 65 86.754 11

10 690 117488 10 3 812 1055.51 9
11 700 116132 13 4 39 55.176 12
12 710 120941 10 3 12 21.208 9
13 720 127996 9 2 11299 15411.1 8
14 730 131598 9 2 25142 37801.4 8
15 740 130162 13 4 52 72.597 12 3 31056 40681.6 11
16 750 137096 10 3 4498 6453.14 9
17 760 138953 10 3 9 18.662 9
18 770 141210 13 4 13 24.707 12 3 9561 16496.5 11

RESULTS AND DISCUSSION 20 / 24

Conclusions

We proposed an exact branch and bound and an approximation heuristic
algorithms for the domination problem in general graphs which outperform the
state-of-the-art exact and approximation, respectively, algorithms from Van Rooij
et al. [13] and Hernández et al. [10], respectively. The first proposed exact Binary
Domination Search algorithm combines upper and lower bounds with binary
search. The initial lower bound is obtained directly from the earlier known
properties and the initial upper bound is obtained by the earlier known best
heuristic algorithm for the problem. The practical behavior of the algorithm was
tested on a considerable number of the randomly generated problem instances
with a size up to 300. On random instances with graphs with an average density
of 0.5 algorithms from Van Rooij et al. [13] delayed 168 times more than the
Binary Domination Search algorithm. The approximate Depth Breadth Search
heuristic combine depth-first search with breadth-first search and was able to
improve solutions delivered by the earlier known state-of-the-art algorithm
(Hernández et al. [10]) in 98.62% of the tested instances.

CONCLUSIONS 21 / 24

Author Contributions: The authors contributed equally to this research.
Investigation, F.A.H.M., E.P.I., J.M.S.A. and N.V.; writing—review and editing,
F.A.H.M., E.P.I., J.M.S.A. and N.V. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was partially supported by SEP PRODEP publication grant.
The fourth author was supported by SEP PRODEP 511/6 grant and CONACyT
2020-000019-01NACV-00008 grant.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

22 / 24

References I
Abel Cabrera Mart́ınez, Juan Carlos Hernández-Gómez, E Parra Inza, and José M Sigarreta.
On the total outer k-independent domination number of graphs.
Mathematics, 8(2):194, 2020.

Alina Campan, Traian Marius Truta, and Matthew Beckerich.
Fast dominating set algorithms for social networks.
In MAICS, pages 55–62, 2015.

Vasek Chvatal.
A greedy heuristic for the set-covering problem.
Mathematics of operations research, 4(3):233–235, 1979.

Stephen Eubank, VS Anil Kumar, Madhav V Marathe, Aravind Srinivasan, and Nan Wang.
Structural and algorithmic aspects of massive social networks.
In Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms, pages 718–727, 2004.

Klaus-Tycho Foerster.
Approximating fault-tolerant domination in general graphs.
In 2013 Proceedings of the Tenth Workshop on Analytic Algorithmics and Combinatorics (ANALCO), pages 25–32.
SIAM, 2013.

Fedor V Fomin, Fabrizio Grandoni, and Dieter Kratsch.
A measure & conquer approach for the analysis of exact algorithms.
Journal of the ACM (JACM), 56(5):1–32, 2009.

Serge Gaspers, Dieter Kratsch, Mathieu Liedloff, and Ioan Todinca.
Exponential time algorithms for the minimum dominating set problem on some graph classes.
ACM Transactions on Algorithms (TALG), 6(1):1–21, 2009.

REFERENCES 23 / 24

References II
Matt Gibson and Imran A Pirwani.
Approximation algorithms for dominating set in disk graphs.
arXiv preprint arXiv:1004.3320, 2010.

TeresaW Haynes.
Domination in Graphs: Volume 2: Advanced Topics.
Routledge, 2017.

Frank Angel. Hernández Mira, Ernesto Parra Inza, Jose Maŕıa Sigarreta Almira, and N. Vakhania.
A polynomial-time approximation to a minimum dominating set in a graph.
Theoretical Computer Science. A submitted manuscript.

Harry B Hunt III, Madhav V Marathe, Venkatesh Radhakrishnan, Shankar S Ravi, Daniel J Rosenkrantz, and Richard E
Stearns.
Nc-approximation schemes for np-and pspace-hard problems for geometric graphs.
Journal of algorithms, 26(2):238–274, 1998.

Anupriya Jha, Dinabandhu Pradhan, and S Banerjee.
The secure domination problem in cographs.
Information Processing Letters, 145:30–38, 2019.

Johan MM Van Rooij and Hans L Bodlaender.
Exact algorithms for dominating set.
Discrete Applied Mathematics, 159(17):2147–2164, 2011.

Kexiang Xu, Xia Li, and Sandi Klavžar.
On graphs with largest possible game domination number.
Discrete Mathematics, 341(6):1768–1777, 2018.

REFERENCES 24 / 24

	IOCA2021
	ABSTRACT
	INTRODUCTION
	METHODS
	Implicit enumeration
	A combined DFS and BFS search

	RESULTS AND DISCUSSION
	CONCLUSIONS
	
	REFERENCES

