

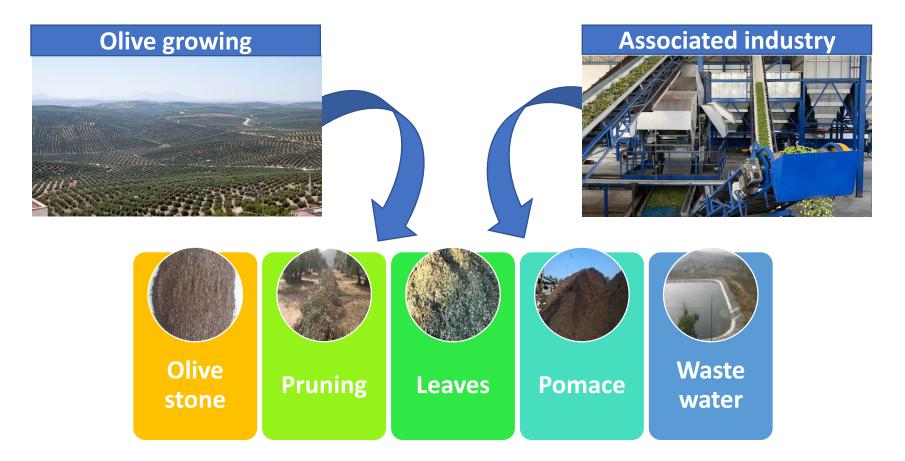
Effective production of bioactive phenolic compounds from olive stones

Carmen Padilla-Rascón^{1,2*}, Encarnación Ruiz^{1,2}, Eulogio Castro^{1,2}, Luisa B. Roseiro³, Luis C. Duarte³, Florbela Carvalheiro³

¹ Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Jaén, Spain.

² Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, 23071, Jaén, Spain

³ Unidade de Bioenergia e Biorrefinarias, LNEG—Laboratório Nacional de Energia e Geologia, Lisboa, Portugal.


* Correspondence: cpadilla@ujaen.es; Tel.: +34 953 21 36 45

Index

- Introduction
- Objective
- Materials and methods
- ✤ Results
- Conclusions
- ✤ References
- Acknowledgments

Introduction

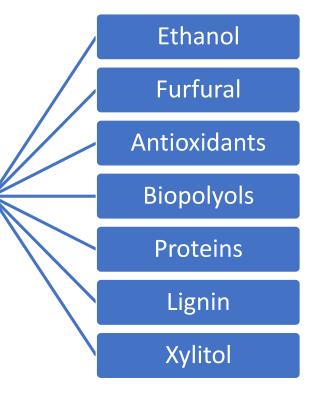
Olive growing and the associated industry generate a large amount of waste.

Introduction

6 million tonnes/year of olives stones in Spain

The olive stone accounts for 10% of the weight of the olive

600,000 tonnes of olive stone per year


Olive stones (OS) are a by-product generated in the olive oil production process, obtaining an average of 600,000 tons of OS/year.

Introduction

Olive stones:

- Renewable and abundant lignocellulosic biomass.
- High concentration of sugars.
- Centralised location in mills and associated industries.

It is an ideal material to obtain high added value products in the **BIOREFINERIES** concept:

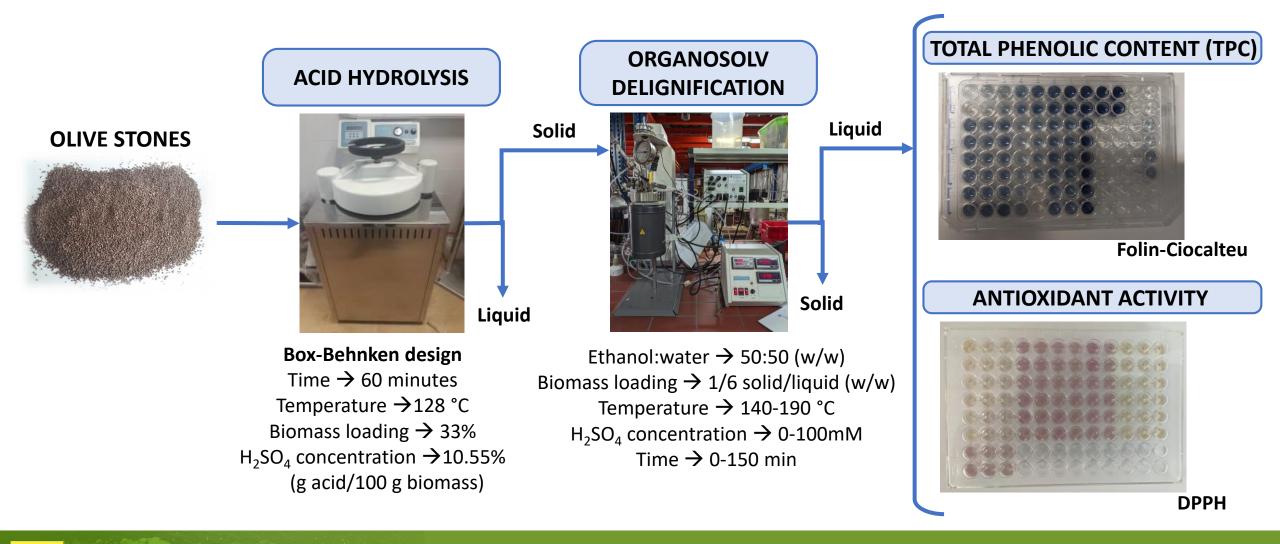
Antioxidants present potential health benefits and applications for the pharmaceutical and food industries.

Foods

The aim of this work is the valorization of the liquor obtained after a two-stage process, first acid stage followed by an organosolvent stage, for its use as a biosource of preservatives and non-synthetic additives for the food industry.

Materials and methods

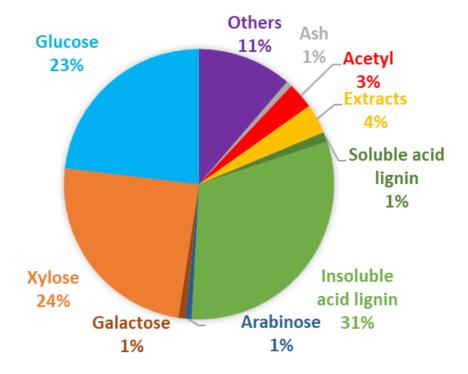
BIOMASS CHARACTERIZATION



Sugars

- **Extractives**
- Acid Insoluble Lignin
- Acid Soluble Lignin
- Acetyl gropus
- Ash

The 2nd International Electronic Conference on Foods Foods Future Foods and Food Technologies for a Sustainable World 202 15-30 OCTOBER 2021 | ONLINE


Materials and methods

The 2nd International Electronic Conference on Foods Future Foods and Food Technologies for a Sustainable World 15-30 OCTOBER 2021 | ONLINE

Foods

OLIVE STONES COMPOSITION

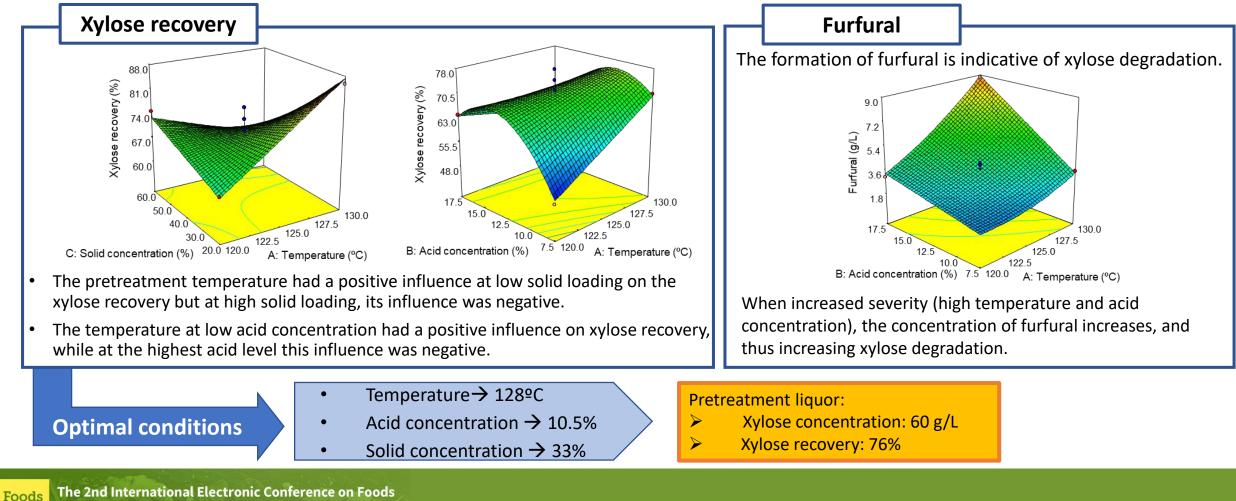
- Olive stones is a lignocellulosic material composed mainly of cellulose, hemicellulose and lignin.
- Xylose is the main hemicellulosic sugar.

The 2nd International Electronic Conference on Foods Future Foods and Food Technologies for a Sustainable World 15-30 OCTOBER 2021 | ONLINE

Foods

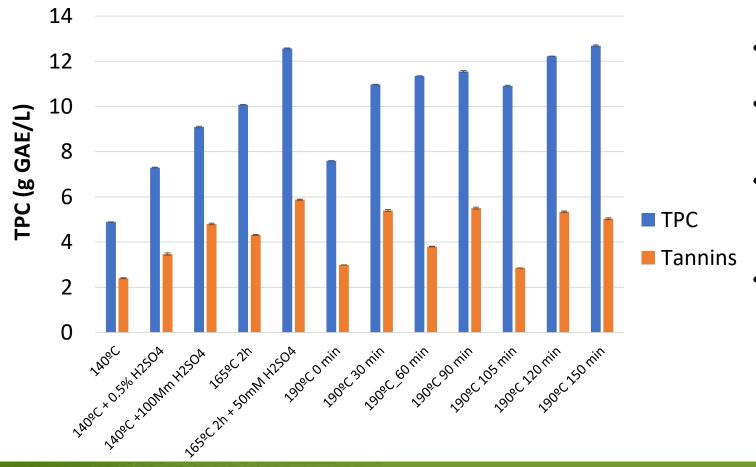
TWO-STAGE EXPERIMENTAL

FIRST ACID STAGE


• Most of the hemicelluloses are solubilized in the first acidic stage.

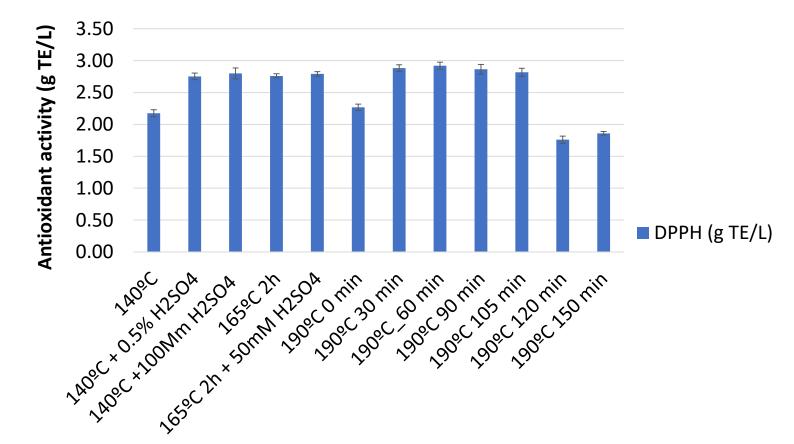
SECOND ORGANOSOLV STAGE

- In the second organosolv stage, most of the lignin is removed, resulting in a cellulose-rich solid.
- The liquor obtained in the second organosolv stage is enriched in phenolic compounds and antioxidants.


In the first acidic stage, the aim is to maximise xylose recovery.

OPTIMIZATION OF THE EXPERIMENTAL CONDITIONS OF THE FIRST ACIDIC STEP

The 2nd International Electronic Conference on Foods Future Foods and Food Technologies for a Sustainable World 15-30 OCTOBER 2021 | ONLINE


In the second organosolv stage, the aim is to maximise phenolic compounds and antioxidants recovery.

TOTAL PHENOLIC CONTENT OF THE ORGANOSOLV LIQUID

- The phenols concentration measured in the liquors is between 5 and 12 g GAE/L.
- Tannins between 2 and 6 GAE g/L. Tannins are non-synthetic preservatives and additives.
- It implies a phenols yield of 7 GAE g/100 g of processed material, being in the range of those obtained from other vegetable sources.
- The highest concentrations of phenols and tannins are obtained in the experiments performed at 165°C and 50 mM H₂SO₄ and at 190 °C in those with longer reaction time.

ANTIOXIDANT ACTIVITY OF THE ORGANOSOLV LIQUID

- No major variations were observed in the concentrations obtained in the different experiments.
- The highest concentrations are found in the experiments at 190 °C and with times between 30 and 105 minutes, reaching almost 3 g TE/L.

Conclusions

The first acidic stage is optimal for xylose recovery.
The liquor obtained after organosolv pretreatment of olive stones can be also valued as a bio-source of non-synthetic preservatives and additives for the food industry.

References

- 1. Padilla-Rascón, C.; Ruiz-Ramos, E.; Romero, I.; Castro, E.; Oliva, J.M.; Ballesteros, I.; Manzanares, P. Valorisation of Olive Stone By-Product for Sugar Production Using a Sequential Acid/Steam Explosion Pretreatment. Ind. Crops Prod. 2020, 148, 112279, doi:10.1016/j.indcrop.2020.112279.
- 2. Padilla-Rascón, C.; Romero-García, J.M.; Ruiz, E.; Romero, I.; Castro, E. Microwave-Assisted Production of Furfural from the Hemicellulosic Fraction of Olive Stones. Process Saf. Environ. Prot. 2021, 152, 630–640, doi:10.1016/j.psep.2021.06.035.
- 3. Gómez-Cruz, I.; Romero, I.; Contreras, M. del M.; Padilla-Rascón, C.; Carvalheiro, F.; Duarte, L.C.; Roseiro, L.B. Exhausted Olive Pomace Phenolic-Rich Extracts Obtention: A First Step for a Biorefinery Scheme Proposal. Proceedings 2020, 70, 10, doi:10.3390/foods 2020-07612.

Acknowledgments

- The authors want to acknowledge the financial support from Agencia Estatal de Investigación (MICINN, Spain) and Fondo Europeo de Desarrollo Regional, reference project ENE2017-85819-C2-1-R.
- Carmen Padilla Rascón expresses her gratitude to the Universidad de Jaén for financial support grant R5/04/2017 and Acción 6 "Ayudas para estancias breves de Personal Investigador en Formación encaminadas a la obtención del título de Doctor con Mención Internacional".
- This research has been carried out at the Biomass and Bioenergy Research Infrastructure (BBRI)-LISBOA-01-0145-FEDER-022059, supported by **Operational Programme for Competitiveness and Internationalization** (PORTUGAL2020), by Lisbon Portugal Regional Operational Programme (Lisboa 2020) and by North Portugal.

Effective production of bioactive phenolic compounds from olive stones

Carmen Padilla-Rascón^{1,2*}, Encarnación Ruiz^{1,2}, Eulogio Castro^{1,2}, Luisa B. Roseiro³, Luis C. Duarte³, Florbela Carvalheiro³

¹ Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Jaén, Spain.

² Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, 23071, Jaén, Spain

³ Unidade de Bioenergia e Biorrefinarias, LNEG—Laboratório Nacional de Energia e Geologia, Lisboa, Portugal.

* Correspondence: cpadilla@ujaen.es; Tel.: +34 953 21 36 45