Food-to-food Fortification of Rice Flour (*Swarna Cv.*) using Basil, Marjoram and Spearmint Dried Leaves Powder: A Physicochemical and Nutritional Study

Siddharth Vishwakarma^{1*}, Chandrakant Genu Dalbhagat¹, Hari Niwas Mishra¹

¹Agricultural and Food Engineering Department, IIT Kharagpur, Kharagpur-721302, India

*siddharth.vishwakarmar08@gmail.com

WAC

SL

Fe

ΔΕ

Introduction

Food-to-Food fortification (FtFF) is an emerging technique to enrich nutrient-deficient foods by adding foods with relatively high amounts of one or more micro and macronutrients [1]. However, its application at commercial scale is limited. Thus, an attempt was made to explore the nutritional and physio-chemical effect of dried herbs like basil, marjoram, and spearmint addition, as potential fortificants for rice flour.

Objectives

- To evaluate physio-chemical properties like water absorption index (WAI), water solubility index (WSI), oil absorption capacity (OAC), water absorption capacity (WAC) and solubility (SL) of fortified rice flour.
- To find out change in iron content and color difference on fortification of

Broken rice G(96.6%) G(96.6%) G(1.4%) G(1.4%)

Material and Methods

rice flour from basil, spearmint and marjoram powders.

Table 1: Different rice-based formulations using basil, marjoram and spearmint

Raw material	Fortification level (gram)			
	B1	B2	B3	B 4
Basil	1	2	3	4
SMP	3.4	3.4	3.4	3.4
Rice flour	95.6	94.6	93.6	92.6
	M1	M2	M3	M4
Marjoram	1	2	3	4
SMP	3.4	3.4	3.4	3.4
Rice flour	95.6	94.6	93.6	92.6
	S 1	S 2	S 3	S4
Spearmint	1	2	3	4
SMP	3.4	3.4	3.4	3.4
Rice flour	95.6	94.6	93.6	92.6

B: Basil fortified, M: Marjoram fortified, S: Spearmint fortified; 1, 2, 3, 4 represent % of fortificants

Figure 1: Preparation of different rice-based basil, marjoram and spearmint fortified samples

Results & Discussion

Note: Bars having different letter at end in same graph are significantly different (p < 0.05) using Tukey's test.

Summary & Conclusion

- The basil, spearmint and marjoram fortification did not affect significantly (p>0.05) WAI (Figure 2). A similar result was observed in OAC except for basil at 3-4 % fortification level (Figure 3).
- ✓ The WSI of all fortified samples was significantly (p<0.05) higher than control sample (Figure 4).
- ✓ The addition of SMP significantly (p<0.05) decreased WAC, however, addition of all fortificants increased the WAC (Figure 5). A similar increasing trend in solubility index was observed (Figure 6).</p>
- The improvement in the iron content was observed upon addition of all fortificants. The highest result were obtained for 4% marjoram fortified sample (Figure 7).
- ✓ All the fortified samples showed significantly higher color difference (p<0.05) than the control sample in which marjoram fortified samples were the lowest (Figure 8).

Practical Application

- The outcomes of the study indicated that the basil, spearmint and marjoram can be used as natural fortificants to improve iron content of the rice-based formulations.
- This study provides insights use of natural fortificants in formulating FtFF products at commercial scale.

Reference

1. Kruger, J., Taylor, J. R. N., Ferruzzi, M. G., & Debelo, H. (2020). What is food-to-food fortification? A working definition and framework for evaluation of efficiency and implementation of best practices. Comprehensive Reviews in Food Science and Food Safety, 19(6), 3618–3658. https://doi.org/10.1111/1541-4337.12624

Figure 8: Effect of fortification on ΔE content of rice flour