

1

2

3

4

5

6

7 8 9

10

21

22

Type of the Paper (Proceedings, Abstract, Extended Abstract, Editorial, etc.)

New in the catalytic synthesis of practically important eightand nine-membered carbocycles by cycloaddition reactions with the participation of 1,3,5-cycloheptatrienes and 1,3,5,7-cyclooctatetraenes ⁺

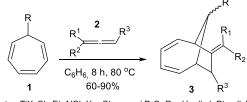
Gulnara N. Kadikova,* Usein M. Dzhemilev

Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa
450075, Russian Federation; Dzhemilev@anrb.ru (U.M.D.)
Correspondence: Kad.Gulnara@gmail.com; Tel. +791-7481-8495

+ Presented at the title, place, and date.

Abstract: The data obtained by the authors in the field of chemistry of 1,3,5-cycloheptatrienes and 11 1,3,5,7-cyclooctatetraenes with the participation of complexes of transition metals are summarized. 12 The reactions of cyclocodimerization of 1,3,5-cycloheptatrienes and 1,3,5,7-cyclooctatetraenes with 13 alkenes, dienes and alkynes in the presence of transition metal complexes, carried out by the type 14 of $[6\pi + 2\pi]$ - and $[4\pi + 2\pi]$ -cycloaddition, are considered. Special attention is paid to the application 15 of these reactions in the synthesis of practically important bi-, tri- and polycyclic strained com-16 pounds, as well as in the development of stereoselective methods for the synthesis of natural 17 compounds. 18

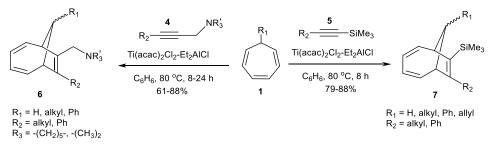
Keywords:cycloaddition; 1,3,5-cycloheptatrienes; 1,3,5,7-cyclooctatetraenes; alkenes; dienes; al-19kynes; transition metal complexes; eight- and nine-membered carbocycles20


1. Introduction

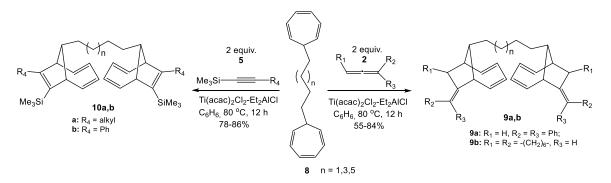
Among the large number of possible ways of constructing medium cycles, the most 23 preferred are those based on cycloaddition reactions using metal complex catalysis 24 methods [1-3]. The development of reactions of catalytic cycloaddition with obtaining 25 medium cycles is one of the most urgent and demanded areas of modern organic syn-26 thesis, in view of the high prevalence of these compounds in the composition of a large 27 number of biologically active substances and drugs [1]. According to the analysis of the 28 world literature, one of the promising directions in the synthesis of medium cycles is di-29 rected catalytic conversions of available cyclic polyunsaturated monomers 30 1,3,5-cycloheptatrienes (CHT) and 1,3,5,7-cyclooctatetraene (COTT) [3]. In the literature, 31 there are preferably publications devoted to the study of reactions of thermally and 32 photochemically induced cycloaddition of alkenes, 1,2-, 1,3-dienes and alkynes to Fe-, 33 Ru- and Cr-containing carbonyl complexes CHT [4-8]. The catalytic variants of these 34 transformations are represented by Ti-, Co-, Cr-, Mo- and Rh-catalyzed cyclodimeriza-35 tion of CHT [9-15]. 36

2. Results and discussion

To date, we have accumulated significant experience in the development of effective 38 one-pot methods for the synthesis of various classes of previously undescribed bi-, triand polycyclic compounds based on cycloaddition reactions CHTs and COTT catalyzed 40 by complexes of transition metals [3]. As a result of research carried out over the past 5-10 41 years, we have proposed effective preparative methods for the synthesis of a wide range 42


of substituted bicyclo[4.2.1]nona-2,4-dienes and bicyclo[4.2.1]nona-2,4,7-trienes based on 1 reactions of titanium- and cobalt-catalyzed cycloaddition of 1,2-dienes and alkynes to 2 CHT and its derivatives. So, in 2013, we developed a two-component catalytic system 3 TiX₂Cl₂-Et₂AlCl (X = Cl, acac, *i*-PrO), which was used for the first time in the $[6\pi+2\pi]$ cycloaddition of 1,2-dienes **2** to CHT and 7-alkyl(phenyl,allyl)-1,3,5-cycloheptatrienes **1** to 5 form substituted bicyclo[4.2.1]nona-2,4-dienes **3** as a single regioisomer [16] (Scheme 1). 6

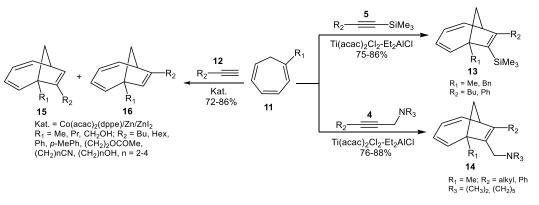
Kat. = TiX₂Cl₂-Et₂AlCl, X = Cl, acac, *i*-PrO; R = H, alkyl, Ph, allyl 1) R₁ = H, CH₃, Ph; R₂ = alkyl, Ph, Bn, -(CH₂)₅-; R₃ = H; 2) R₁ = R₃ = -(CH₂)₆-, R₂ = H


Scheme 1. Cycloaddition of 1,2-dienes with CHTs.

In the development of research on the synthesis of new bicyclo[4.2.1]nonanes, as 9 well as in order to expand the scope of application of the developed titanium-containing 10 catalytic system, we carried out the cyclocodimerization of CHTs with alkynes [17]. It 11 was found that $[6\pi+2\pi]$ cycloaddition of nitrogen- **4** and silicon-containing alkynes **5** to 12 CHTs **1** under the action of the Ti(acac)₂Cl₂-Et₂AlCl catalytic system in benzene for 8-24 h 13 at 80 °C leads to the formation of bicyclo[4.2.1]nona-2,4,7-trienes **6** (61-88%) and **7** 14 (79-88%) (Scheme 2):

Scheme 2. Cycloaddition of alkynes with CHTs.

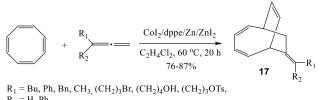
Of particular interest are the works [18,19] on the reactions of cyclocodimerization of 18 bis(1,3,5-cycloheptatriene-7-yl)alkanes - monomers containing in their structure simul-19 taneously two cycloheptatriene fragments, which means two reaction centers. We found 20 that as a result of the interaction of bis(1,3,5-cycloheptatriene-7-yl)alkanes 8 with a two-21 fold excess of 1,2-dienes 2 or Si-containing alkynes 5 under the action of the catalytic 22 system Ti(acac)₂Cl₂-Et₂AlCl (benzene, 12 hours , 80 °C) the corresponding $[6\pi+2\pi]$ cy-23 cloadducts are formed bis(bicyclo[4.2.1]nona-2,4-diene)alkanes 9a,b and 24 bis(bicyclo[4.2.1]nona-2,4,7-triene)alkanes 10a,b [18,19] (Scheme 3): 25


17

16

7

Scheme 3. Cycloaddition of alkynes and 1,2-dienes with bis(1,3,5-cycloheptatriene-7-yl)alkanes.


In 2019, we studied the cyclocodimerization reactions of 1-substituted CHTs [20]. 2 We found 1-methyl(benzyl)-1,3,5-cycloheptatrienes **11** enter into a $[6\pi+2\pi]$ -cycloaddition 3 reaction with Si-containing alkynes 5 under the action of the catalytic system 4 Ti(acac)₂Cl₂-Et₂AlCl (5 mol% Ti(acac)₂Cl₂, Ti/Al = 1:20, C₆H₆, 80 °C, 8 h) to form substi-5 tuted bicyclo[4.2.1]nona-2,4,7-trienes 13 as a single regioisomer. Similarly, under the de-6 veloped conditions (15 mol% Ti(acac)2Cl2, Ti/Al = 1:20, C6H6, 80 °C, 8 h), we managed to 7 carry out the cyclodimerization of 1-methylcycloheptatriene 11 with propargylamines 4 8 to obtain nitrogen-containing bicyclo[4.2.1]nona-2,4,7-trienes 14 in high yields (76-88%) 9 [20] (Sheme 4). 10

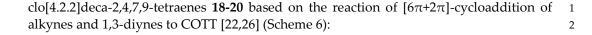
Scheme 4. Cycloaddition of alkynes with CHTs.

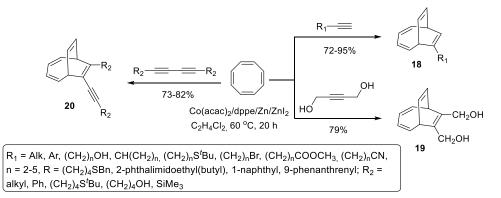
The reaction of 1-substituted CHTs 11 with terminal alkynes 12 takes place in the presence of three-component cobalt-containing catalytic а system 14 Co(acac)₂(dppe)/Zn/ZnI₂ with the formation of functionally substituted bicy-15 clo[4.2.1]nona-2,4,7-trienes 15, 16 as two regioisomers (72-86%) (Scheme 4). 16

In the development of ongoing studies on the synthesis of middle cycles based on 17 cyclocodimerization of cyclic polyenes with unsaturated compounds of various struc-18 tures, as well as with the aim of developing effective preparative methods for the syn-19 thesis of new classes of bicyclo[4.2.2]decatri(tetra)enes, we paid attention to COTT. In 20 2015, for the first time, we carried out the $[6\pi+2\pi]$ -cycloaddition of 1,2-dienes to COTT in 21 the presence of a four-component catalytic system CoI2/dppe/Zn/ZnI2 with the formation 22 of substituted (E)-bicyclo[4.2.2]deca-2,4,7-trienes 17 in high yields (76-87%) [21] (Scheme 23 5). 24

 $R_2 = H, Ph$

Scheme 5. Cycloaddition of 1,2-dienes with COTT.


It should be emphasized that $[6\pi+2\pi]$ -cycloadducts of COTT with alkynes - bicy-27 clo[4.2.2]deca-2,4,7,9-tetraenes are widely used as key synthons in the preparation of 28 practically valuable natural and synthetic biologically active compounds [22-25]. For this 29 reason, the creation of highly efficient methods for the synthesis of bicy-30 clo[4.2.2]deca-2,4,7,9-tetraenes is especially urgent and in demand. To accomplish this 31 task, we have developed an effective catalytic system - Co(acac)₂/dppe/Zn/ZnI₂, using 32 which we have synthesized a wide range of functionally substituted bicy-33


1

13

11

12

Scheme 6. Cycloaddition of alkynes with COTT.

3. Conclusions

Thus, in the course of our studies, we have developed effective one-pot methods for the synthesis of a large assortment of previously undescribed and hard-to-reach functionally substituted bicyclo[4.2.1]nonadi(tri)enes and bicyclo[4.2.2]decatri(tetra)enes, which can act in as key precursors in the synthesis of modern drugs and valuable biologically active compounds.

Author Contributions: Conceptualization, U.M.D. and G.N.K.; methodology, validation, 12 and execution of chemistry experiments, G.N.K.; manuscript preparation, U.M.D. and 13 G.N.K. All authors have read and agreed to the published version of the manuscript. 14 Funding: The work was done within approved plans for research projects at the IPC RAS 15 State Registration No. AAAA-A19-119022290008-6 (2019-2021), Grant of Russian Foun-16 dation for Basic Research (19-03-00393). 17 Acknowledgments: The structural studies of the synthesized compounds were per-18 formed with the use of Collective Usage Centre "Agidel" at the Institute of Petrochemis-19 try and Catalysis of RAS.

Conflicts of Interest: The authors declare no conflict of interest.

References

Petasis, N.A.; Patane, M.A. The Synthesis of Carbocyclic Eight-Membered Rings. Tetrahedron 1992, 48, 5757–5821. 1.

2.	Yu, Z.X.; Wang, Y.; Wang, Y. Transition-metal-catalyzed cycloadditions for the synthesis of eight-membered carbocycles.	24
	Chem. Asian J. 2010 , 1072-1088.	25

- 3. D'yakonov, V.A.; Kadikova, G.N.; Dzhemilev, U.M. Transition Metal Complex-Mediated Chemistry of 26 1,3,5-Cycloheptatrienes. Russ. Chem. Rev. 2018, 87(8), 797-820. 27
- 4. Green, M.; Heathcock, S.M.; Wood, D. Reactions of Co-ordinated Ligands. Part II. The reaction of 28 tricarbonylcycloheptatrieneiron and tricarbonyl(methy1-, bromo-, and phenylcyclo-Octatetraene)iron with hexafluoroacetone, 29 dicyanobis-(trif1uoromethyl)ethylene, and tetracyanoethylene. J. C. S. Dalton 1973, 1564–1569. 30
- Cunningham, D.; Hallinan, N.; Moran, G.; McArdle, P. Reaction of tetracyanoethene with tricarbonyliron complexes of some 5. 31 substituted 7-methylenecycloheptatrienes and the subsequent isomerization of the initial addition products. J. Organomet. 32 Chem. 1987, 333, 85-95. 33
- Goldschmidt, Z.; Genizi, E.; Gottlieb, H.E.; Hezroni-Langermann, D. Pericyclic organometallic reactions. Cycloaddition 6. 34 reactions of (η⁴-cycloheptatriene)Ru(CO)₃. Crystal structure of 35

3

4

5

6

7

8 9 10

11

- Rigby, J.H.; Ateeq, H.S.; Charles, N.R.; Cuisiat, S.V.; Ferguson, M.D.; Henshilwood, J.A.; Krueger, A.C.; Ogbu, C.O.; Short, 3
 K.M.; Heegt, M.J. Metal-promoted higher-order cycloaddition reactions. Stereochemical, regiochemical, and mechanistic as pects of the [6π+4π] reaction. *J. Am. Chem. Soc.* 1993, 115, 1382–1396.
- Rigby, J.H. Chromium(0)-promoted higher-order cycloaddition reactions in organic synthesis. *Tetrahedron* 1999, 55, 6 4521–4538.
- 9. Rigby, J.H.; Kondratenko, M.A.; Fiedler, C. Preparation of a resin-based chromium catalyst for effecting [6π+2π] cycloaddi 8 tion reactions. *Org. Lett.* 2000, *2*, 3917–3919.
 9
- Rigby, J.H.; Mann, L.W.; Myers, B.J. Room temperature chromium(0)-catalyzed higher-order cycloaddition reactions. *Tetra-* 10 *hedron Lett.* 2001, 42, 8773–8775.
- Mach, K.; Antropiusova, H.; Petrusova, L.; Hanus, V.; Turecek, F. [6+2]Cycloadditions Catalyzed by Titanium Complexes.
 Tetrahedron 1984, 40, 3295-3302.
 13
- Klein, R.; Sedmera, P.; Cejka, J.; Mach, K. Titanium-Catalyzed Cycloaddition Reactions of Phenyl(trimethylsilyl)acetylene to Conjugated Dienes and 1,3,5-Cycloheptatriene. 1-Phenyl-2-(trimethylsilyl)-cyclohexa-1,4-dienes and Their Aromatization. J.
 Organomet. Chem. 1992, 436, 143-153.
- Achard, M.; Tenaglia, A.; Buono, G. First Cobalt(I)-Catalyzed [6+2] Cycloadditions of Cycloheptatriene with Alkynes. Org. 17 Lett. 2005, 7(12), 2353-2356.
- 14.
 Schmidt, T. Molybdenum-catalysed and -mediated cycloaddition reactions: efficient synthesis of complex products from 19
 19

 1-oxa-l,3-dienes and cyclotrienes or -tetraenes. Chem. Ber. 1997, 130, 453–461.
 20
- Zhang, X.; Wang, J.; Zhao, H.; Wang, J. Rhodium-Catalyzed [6+2] Cycloaddition of Internal Alkynes with Cycloheptatriene: 21 Catalytic Study and DFT Calculations of the Reaction Mechanism. *Organometallics* 2013, *32*, 3529–3536. 22
- 16. Dzhemilev, U.M.; Kadikova, G.N.; Kolokoltsev, D.I.; D'yakonov, V.A. Catalytic [6π+2π]-Cycloaddition of Alkynes, 1,2- and
 1,3-Dienes to 1,3,5-Cycloheptatrienes Involving Ti Complexes. *Tetrahedron* 2013, 69, 4609-4611.
 24
- D'yakonov, V.A.; Kadikova, G.N.; Kolokoltsev, D.I.; Ramazanov, I.R.; Dzhemilev, U.M. Titanium-Catalyzed 25 [6π+2π]-Cycloaddition of Alkynes and Allenes to 7-Substituted 1,3,5-Cycloheptatrienes. *Eur. J. Org. Chem.* 2015, 4464–4470.
- D'yakonov, V.A.; Kadikova, G.N.; Khalilov, L.M.; Dzhemilev, U.M. Catalytic [6π+2π]-Cycloaddition of 1,2-Dienes to 27 Bis(cyclohepta-1,3,5-trien-7-yl)alkanes in the Presence of Ti(acac)₂Cl₂-Et₂AlCl. *Russ. J. Org. Chem.* **2018**, *54*(6), 832-839.
- Dyakonov, V.A.; Kadikova, G.N.; Nasretdinov, R.N.; Kolokoltsev, D.I.; Dzhemilev, U.M. Titanium-catalyzed 29 [6π+2π]-cycloaddition of Si-containing alkynes to *bis*(1,3,5-cycloheptatriene-7-yl)alkanes. *Tetrahedron Lett.* 2017, *58*, 1714-1716. 30
- D'yakonov, V.A.; Kadikova, G.N.; Nasretdinov, R.N.; Dzhemileva, L.U.; Dzhemilev, U.M. The Synthesis of Bicyclo[4.2.1]nona-2,4,7-trienes by [6π+2π]-Cycloaddition of 1-Substituted 1,3,5-Cycloheptatrienes Catalyzed by Titanium and Cobalt Complexes. J. Org. Chem. 2019, 84, 9058-9066.
 33
- 21. Dyakonov, V.A.; Kadikova, G.N.; Gazizullina, G.F.; Khalilov, L.M.; Dzhemilev, U.M. Tetrahedron Lett. 2015, 56, 2005-2007. 34
- Dyakonov, V.A.; Kadikova, G.N.; Dzhemileva, L.U.; Gazizullina, G.F.; Ramazanov, I.R.; Dzhemilev, U.M. Cobalt-Catalyzed
 [6 + 2] Cycloaddition of Alkynes with 1,3,5,7-Cyclooctatetraene as a Key Element in the Direct Construction of Substituted Bi cyclo[4.3.1]decanes. *J. Org. Chem.* 2017, 82(1), 471-480.
- 23. D'yakonov, V.A.; Kadikova, G.N.; Dzhemileva, L.U.; Gazizullina, G.F.; Unusbaeva, M. M.; Dzhemilev, U. M. Oxidative skeletal rearrangement of bicyclo[4.2.2]deca-2,4,7,9-tetraenes to bicyclo[4.3.1]deca-2,4,8-triene-7,10-diols and study of the anti-tumor activity of the products *in vitro*, *Tetrahedron* 2018, 74(30), 4071-4077.

1

- D'yakonov, V.A.; Kadikova, G.N.; Gazizullina, G.F.; Dzhemileva, L.U.; Tulyabaev, A.R.; Dzhemilev, U.M. Synthesis and An titumor Activity Assay of Epoxy Bicyclo[4.2.2]deca-2,4,7,(9)-tri(tetra)enes and Tricy clo[9.4.2.02,10]heptadeca-2,12,14,16-tetraene. *Curr. Org. Chem.* 2019, 23(10), 1158-1165.
- 25. D'yakonov, V.A.; Kadikova, G.N.; Gazizullina, G.F.; Ramazanov, I.R.; Dzhemileva, L.U.; Dzhemilev, U.M. Reactions of functionally substituted bicyclo[4.2.2]deca-2,4,7,9-tetraenes with *m*-chloroperbenzoic acid and *in vitro* evaluation Of Product Cytotoxicity against tumor cells. *Mendeleev Commun.* 2019, 29(5), 517-519.
- 26. D'yakonov, V.A.; Kadikova, G.N.; Gazizullina, G.F.; Dzhemilev, U.M. Cobalt(I)-Catalyzed Cycloaddition of Functionally 7
 Substituted Alkynes and 1,3-Diynes to 1,3,5,7-Cyclooctatetraene in the Synthesis of Bicyclo[4.2.2]deca-2,4,7,9-tetraenes. *Chem- istrySelect.* 2018, 3(22), 6221-6223.