

1

2

3

26

27

28

36

Proceedings The various types of acetaldehyde adsorption on clean, and on modified Rh(111) surface

kas², Ádám Szitás³, Zoltán Kónya².₄, János Kiss⁴	45
niversity of Dunaújváros, Institute of Technology, Táncsics M. u. 1/A, Dunaújváros 2401, Hungary;	6
ovacsimidr@gmail.com	7
ITA-SZTE Reaction Kinetics and Surface Chemistry Research Group, University of Szeged, Dóm tér 7,	8
zeged 6720, Hungary, konya@chem.u-szeged.hu	9
epartment of Physical Chemistry and Materials Science, University of Szeged, Aradi Vértanúk tere 1,	10
zeged 6720, Hungary, szitas@chem.u-szeged.hu	11
epartment of Applied and Environmental Chemistry, University of Szeged, H-6720 Aradi Vértanúk tere 1,	12
lungary, jkiss@chem.u-szeged.hu	
orrespondence: kovacsimidr@gmail.com	13 14
	15
	kas ² , Ádám Szitás ³ , Zoltán Kónya ^{2,4} , János Kiss ⁴ niversity of Dunaújváros, Institute of Technology, Táncsics M. u. 1/A, Dunaújváros 2401, Hungary; ovacsimidr@gmail.com ITA-SZTE Reaction Kinetics and Surface Chemistry Research Group, University of Szeged, Dóm tér 7, zeged 6720, Hungary, konya@chem.u-szeged.hu epartment of Physical Chemistry and Materials Science, University of Szeged, Aradi Vértanúk tere 1, zeged 6720, Hungary, szitas@chem.u-szeged.hu epartment of Applied and Environmental Chemistry, University of Szeged, H-6720 Aradi Vértanúk tere 1, ungary, jkiss@chem.u-szeged.hu orrespondence: kovacsimidr@gmail.com

Abstract: Rhodium is an effective catalyst in the CO+H₂ reaction into C₂-oxygenates. Among the 16 products, acetaldehyde (AA) is an important hydrogen carrier which is also produced in the de-17 composition of ethanol on metal surfaces. The interaction of CH3CHO with Rh(111) surface has been 18 investigated by AES, EELS, TDS and $\Delta\Phi$ methods. The chemisorbed acetaldehyde starts to decom-19 pose at 200 K. The main products of the chemisorbed AA are CO and CH4. Minor products are 20 adsorbed H and C. In the chemisorbed layer η_1 -(O)-CH₃CHO₄ and η_2 -(O,C)-CH₃CHO₄ have been 21 observed. Electronegative and electro positive modifiers may influence the stability of these surface 22 complexes such as i.) surface C_a acts as a simple contaminant by site blocking mechanism. ii) a direct 23 surface reaction with O_a led to the formation of acetate. iii) K_a increases the thermal stability of 24 acetaldehyde by an extended electronic interaction. 25

Keywords: CO2; oligomerization; thermal desorption; alkali promotor;

1. Introduction

Aldehydes are gas-phase products of the decomposition of primary alcohols on metal surfaces [1-2]. Acetaldehyde has an environmental risk because of its carcinogen effect [3]. On the other hand, AA as an intermediate or end product can be a good candidate for chemical energy storage; as a more valuable product of COx hydrogenation [4]. In the ethanol steam reforming reaction the H₂ could release for fuel cell applications. [5]. Transformation of AA into paraldehyde (CH₃CHO)₃ enables to use this couple of compounds in heat pumps [6].

2. Materials and Methods

For our experiments the Rh single crystal from Materials Research Corporation (purity 99,99 %) was cut with (111) orientation. After inserting into the UHV chamber it was sputtered with Ar+ ions. (Typically 1kV, 1x10-7 mbar and 2mA for 10-30 min.) and finally3739it was heated to 900-1100K and this was repeated until no contamination was detected by40AES. Two UHV chamber were used for the TDS and HREELS measurements. The crystal41was cooled to 100 K and 150 K for TDS and HREELS measurements, respectively.42

Citation: Kovács, I.; Szitás, Á.; Farkas, A.P.; Kónya, Z.; Kiss, J. The various types of acetaldehyde adsorption on clean, and on modified Rh(111) surface ⁺. *Chem. Proc.* 2021, *3*, x. https://doi.org/10.3390/xxxxx

Published: date

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/license s/by/4.0/). Acetaldehyde (CH₃CHO) of 99% purity was purchased from Sigma-Aldrich and it was 1 purified by several freeze-pump-thaw cycles and for adsorption it was dosed through a 2 capillary which was placed 1.5 cm from the sample. 3 4

Oxygen (from Messer-Griesheim, 99,99% purity) was used for cleaning after each desorption through a second capillary. A SAES type potassium source was used - after several minutes degassing - for K atom evaporation.

The first UHV system for mainly TDS experiment with a base pressure of 5×10^{-10} 7 mbar, was described previously [7-9]. It was also used for AES, ELS, work function ($\Delta \Phi$) 8 and TDS measurements. A VG mass spectrometer which was placed ca. 1 cm from the 9 single crystal. For TDS 5 K/s heating rate was chosen. The ELS (in the electronic range) 10 were taken by means of a cylindrical mirror analyzer (PHI). The low energy cut off in the 11 ELS was used for $\Delta \Phi$. 12

3. Results

3.1. Reaction on clean and carbon contaminated Rh(111)

The decomposition of AA on clean rodium has been studied in details previously by 15 AES, EELS, TDS and work function methods [10]. Nevertheless, we give a short summary 16 -as a starting point- about those results here as well. The chemisorbed acetaldehyde 17 started to decompose at 200 K producing mainly adsorbed CO and CH₄ which desorbed 18 at Tp=260K. Minor products were adsorbed H and C, too. A weakly adsorbed CH₃CHO 19 desorbed in a sharp peak centered at 150 K. Oligomerised acetaldehyde was also found (20 $[CH3CHO]_{n^+}$, 1 < n < 5) in the gase phase with Tp=225-235 K. The low temperature state 21 was monomer while we observed oligomers namely paraldehyde. On the carbon contam-22 inated surface our HREELS measurements confirmed also the presence of η_1 -(O)-23 CH₃CHO₄ and η_2 -(O,C)-CH₃CHO₄ in the chemisorbed layer. Carbon contamination has a 24 site blocking effect on the adsorption of AA from the gas phase. The amount of products 25 like CH₄, oligomers decreased rapidly with a small shift in Tp values. This effect is less 26 pronounced in the case of CO desorption and at the same time hydrogen desorption sug-27 gests the presence of some CxHy moties. 28

3.2. Reaction with oxygen precovered Rh(111)

The preadsorbed oxygen changed the product distribution, and new products, like 30 water, CO₂ and acetic acid could be detected in TDS (Figure 1A). Water desorbed in a 31 sharp peak, with Tp= 416 K. Two minor peaks centered at 256 K and 306 K also appeared. 32 By recording the CO₂ desorption at amu 44 one can see the evaluation of acetaldehyde as 33 well, since it has a contribution at that mass number too. The higher temperature peaks, 34 with Tp=412 K and 480 K can be considered as CO₂ (red line) and the peaks at Tp=175 K 35 and 242 K as CH₃CHO (green line). The desorption at mass 60 is connected to CH₃COOH 36 with peaks at Tp= 330 K and 420 K. 37

Based on our HREELS results, we observed the formation of acetate as an intermedi-38 ate, which is indicated by the appearance of $v_a(OCO)$ vibration in the spectra at 1660 cm⁻¹ 39 (Figure 1b). In addition, an increase in the thermal stability of acetate (up to T = 325 K) 40was also observed with increasing oxygen coverage (not shown).

13 14

5

6

29

41

Figure 1. (a) Selected TDS spectra from the CH₃CHO + Oa layer on Rh(111). The products of H₂O, CH₃CHO+CO₂ and CH3COOH has been detected at amu= 18, 44 and 60 respectively. (b) HREELS spectra collected from the oxygen preadsorbed (0.25 ML) Rh(111) surface after exposed to 10 L of acetaldehyde at 170 K, and subsequent annealing to higher temperatures.

3.3. The effect of potassium on the adsorption of AA on Rh(111)

The preadsorbed K atoms dramaticaly changed the stability of adsorbed molecules 8 and its desorption products. Figure 2A shows the products from clean Rh(111) (blue line) 9 compared to their desorption from the monolayer K covered surface. The hydrogen de-10 sorption from clean surface presented at Tp=292 K was transferred to 395 K and 596 K. 11 Methane desorption suffered only a minor shift, from 260 K to 300 K. CO desorption from 12 clean surface at 483 K was pulled to 596 K and 645 K. The K desorption curves represent 13 its desorption from bare Rh(111) (blue line) and from the coadsorbed layer (red line). The 14 broad features at Tp= 368 K and 546 K was shifted to 510 K, 596 K and 645 K. Here we 15 have to point out the coincidence peaks centered at 596 K in the case of H₂, CO and K 16 desorption . As a result of the increased electron concentration, the amount of adsorbed material increased and a surface complex formed between potassium and the decomposition intermediates of acetaldehyde. This is also indicated by the significant shift and sta-19 bility of the v(C-O) valence vibration on the HREEL spectra due to the interaction with 20 potassium (Figure 2b). The peaks at 1810-2100 cm⁻¹, which are characteristic of the CO 21 adsorption on the pure rhodium surface depending on the adsorption center, were signif-22 icantly shifted in that case together with the desorption temperatures of the decomposi-23 tion products. 24

3 4 5

1

2

6 7

17 18

Figure 2. (a) Thermal desorption spectra of H_2 , CO and CH₄ from the AA covered (blue line) and with K coadsorbed (red line) layer. The two spectra at amu=39 represent the K TDS without AA (blue line) and with AA coadsorbed layers. (b) Effect of potassium (0.13 ML) on the HREEL spectra after adsorption of 10 L of acetaldehyde on Rh(111), T_a= 170 K.

4. Discussion

4.1. The reaction with preadsorbed O compared to bare and carbon contaminated layer

The product distribution also reflects the fact that partially and fully oxidized processes took place on the surface.. Some of the original AA molecules must have decomposed. Not only C-H bonds were broken, giving H_a atoms on the surface but C-C bond ruptured as well. The latter makes CO₂ desorption possible. The fact that its peak temperature is the highest supports the the oxidation of surface carbon. The acetic acid desorption nearly identical with the one after direct CH₃COOH adsorption (not shown).

4.2. The effect of K atoms on the reaction routes

Surface potassium has a very strong stabilisation effect on the surface layer. The dif-15 ferent products appeared at significantly higher temperatures, these shifts were as large 16 as 40 - 300 K. The decomposition mechanisms must have changed too. The coincidence 17 Tp values suggest the decomposition of a common state. To the interpretation of this find-18 ing we can reffer the similarties with our previos studies [8,9]. The K atoms donate elec-19 trons to the underlaying surface and to the adsorbed molecules. The electron distribution 20 in the molecule might have changed and therefore it will influence the stability of η_1 -(O)-21 CH₃CHO_a and η_2 -(O,C)-CH₃CHO_a forms. 22

Author Contributions: All authors contributed equally to this paper as well as they have read and agreed to the published version of the manuscript.

Conflicts of Interest: The Authors declare there is no conflict of interest.

References,

1. Davis, J.L., Barteau, M.A. The influence of oxygen on the selectivity of alcohol conversion on the Pd(111) surface. Surf. Sci. 1988, 197, 123–152.

1

2

3

4

5

6

11 12 13

14

23

24

25 26

27 28

29

30

2.	McCabe, R.W., Dimaggio, C.L., Madix, R.J. Adsorption and reactions of acetaldehyde on platinum(S)- [6(111)x(100)]. J. Phys. Chem. 1985, 89, 854–861.	1 2
3.	Altshuller, A.P. Production of aldehydes as primary emissions and from secondary atmospheric reactions of alkenes and alkanes during the night and early morning hours. Atm. Environ. 1993, 27A, 21–32	3 4
4.	Kiennemann, A., Breault, R., Hinderman, JP., Laurin, M. Ethanol promotion by the addition of cerium to rhodium– silica catalysts. J. Chem. Soc. Faraday Trans. 1 1987, 83, 2119-2128	5 6
5.	Ferencz, Z., Erdőhelyi, A., Baán, K., Oszkó, A., Óvári, L., Kónya, Z., Papp, C., Steinrück, H-P., Kiss, J. Effects of Support and Rh Additive on Co-Based Catalysts in the Ethanol Steam Reforming Reaction. ACS Catal. 2014, 4, 1205-1218.	7 8 9
6.	Flueckiger, S.M., Volle, F., Garimella, S.V., Mongia, R. K. Thermodynamic and kinetic investigation of a chemical reaction-based miniature heat pump. Energy Conversion and Management 2012, 64, 222–231	10 11
7.	Solymosi, F., Kiss, J., Kovács, I, Adsorption of HCOOH on Rh(111) and its reaction with preadsorbed oxygen. Surf. Sci. 1987, 192, 47-65	12 13
8.	Solymosi, F., Kiss, J., Kovács, I, Adsorption and Decomposition of HCOOH on Potassium-Promoted Rh(111) Surfaces. J. Phys. Chem. 1988, 92, 796-803.	14 15
9.	Kovács, I., Kiss, J., Kónya, Z., The Potassium-Induced Decomposition Pathway of HCOOH on Rh(111). Catalysts	16
	2020, 10, 675	17
10.	Kovács, I., Farkas, A.P., Szitás, Á., Kónya, Z., Kiss, J. Adsorption, polymerization and decomposition of acetaldehyde on clean and carbon-covered Rh(111) surfaces. Surf. Sci. 2017, 664, 129-136	18 19