

Introduction

Optimization of polysaccharides extraction from Spent coffee grounds (SCGs) by pressurized hot water extraction

ацьерсально вылования в составляется и с

Winatta Sakdasri^{1,} Kanyagorn Khamseng¹, Mookanda Wattanavaree¹, Yaowapa Chandeang¹,

and Ruengwit Sawangkeaw ^{2, *}

¹Program in Food process engineering, School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, 1 Chalong Krung 1 Alley, Lad Krabang, Bangkok 10520, Thailand

² Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand

First author: Winatta.sa@kmitl.ac.th, *Corresponding author: Rueangwit.s@chula.ac.th

Results and Discussion

Table.1 A Central composite design matrix and the response values for the extraction yield of polysaccharide.

Dun	A	0/ V: - -			
Run	Temperature (°C)	Pressure (bar)	Extraction time (min)	70 T IEIQ	
1	100	2	120	11.5100	
2	100	2	120	11.5550	
3	80	4	60	10.1562	
4	80	4	60	9.1000	
5	80	4	180	9.4061	
6	80	4	180	9.4061	
7	120	4	60	12.2650	
8	120	4	60	15.2737	
9	120	4	180	14.1212	
10	120	4	180	13.2937	
11	100	8	30	10.6625	
12	100	8	30	9.8187	
13	70	8	120	8.6712	
14	70	8	120	8.2537	
15	100	8	120	9.9675	
16	100	8	120	10.1650	
17	130	8	120	14.9100	
18	130	8	120	16.1700	
19	100	8	210	10.7050	
20	100	8	210	9.9962	
21	80	12	60	7.3437	
22	80	12	60	9.6975	
23	120	12	60	10.6075	
24	120	12	60	13.7875	
25	80	12	180	9.3637	
26	80	12	180	8.5587	
27	120	12	180	13.6300	
28	120	12	180	14.8700	
29	100	14	120	11.4375	
30	100	14	120	9.5612	

Spent coffee grounds (SCGs) are a by-product of the food industry, which contains a rich source of polysaccharides. They contain polysaccharide (45-47%), oil or lipids (9-16%), protein (13-17%), phenolic compounds (1.7-3.5%), caffeine (0.5-1.2%), and other minerals (1.6%) [1], depending on the coffee's species, roasting, grinding, and brewing process. This research was to study the extraction of polysaccharides from SCGs by environmentally friendly technic of pressurized hot water. The process optimization was investigated by response surface methodology (RSM) to produce the highest extraction yield. The pressurized hot water showed an efficient technique to recover polysaccharides from SCG.

Materials and Methods

The SCGs used in this study was supplied by Starbucks, V Market branch, Ladkrabang, Bangkok, Thailand.

The SCGs sample were dried at 40 °C for 24 hours

Table. 2 The analysis of variance (ANOVA) table for the response surface quadratic model of %yield of polysaccharides.

Source	Sum of Squares	df	Mean Square	p-value
Model	140.62	9	15.62	< 0.0001
A (Temperature)	125.66	1	125.66	< 0.0001
B (Pressure)	2.73	1	2.73	0.1033
C (Extraction Time)	0.9019	1	0.9019	0.3384
AB	0.0684	1	0.0684	0.7898
AC	0.7850	1	0.7850	0.3710
BC	1.93	1	1.93	0.1670

Pressurized Hot Water Extraction

Extraction method

Figure 1. Response surface plot demonstrating the effect of (a) temperature and pressure and (b) temperature and **extraction** time on %yield of polysaccharides

> Optimal condition of the highest polysaccharide yield

Operating parameter	Optimal Condition	%Yield		
Operating parameter		Predicted value	Actual value	
Temperature (°C)	120		13.71±53	
Pressure (bar)	4	13.782		
Extraction time (min)	60			

Mixed Extracts SCGsEvaporated byDried a precipitate at100ml: EtOH 200mlRotary evaporator40°C for 24 hr.24 hr.at 50 °C.

Acknowledgements

This research was funded by Research Seed Grant for new Lecturer, KMITL Research Fund (KREF186319). The lab equipment was facilitated by Future food lab of food innopolis at King Mongkut's Institute of Technology Ladkrabang.

[1] Burniol-Figols, A.; Cenian, K.; Skiadas, I.V.; Gavala, H.N. Integration of chlorogenic acid recovery and bioethanol production from spent coffee grounds. *Biochemical Engineering Journal* 2016, 116, 54-64.

Conclusions

The polysaccharides from Spent coffee grounds (SCGs) have been successfully extracted by pressurized hot water in this study. The temperature was observed as the main influence on the increasing of %polysaccharides yield. The optimization condition was temperature of 120 °C, pressure of 4 bar, and extraction time of 60 min. Under this optimal condition, the highest extraction yield was $13.71\pm53\%$ and the total phenolic content was 11.13 ± 1.33 mg gallic acid equivalent (GAE)/g dry SCG