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 Introduction 
Lightweight manipulators are the focus of robotics research 

due to their low usage of energy and positive economic 
aspect regardless of the complexity of their mechanical 
model. 

 

   The mechanical modeling of any serial link flexible 
manipulator is based on the one  of a single-link flexible 
manipulator. 

 

The mechanical modeling of a single-link in this work is based on 
the  Euler-Bernoulli beams kinematics. 



   

 

 

 In the state of art, the kinematics of the Euler-Bernoulli 
beam is usually approached by the assumed traditional 
deformation field that cannot allow having an 
orthogonal elastic rotation matrix to the second-order.  

 

 The kinematic model in this work is based on the complete 
second-order deformation field. 



 Mechanical modeling 
 
    The system consists of a base subjected to an applied 

torque Tmot by a motor, a flexible link modeled as an 
Euler-Bernoulli beam with a circular cross-section with 
radius R,  and length L and a payload with mass mp  
and inertia matrix Ip at the free end of the link. 

 

The beam is subjected to an axial stretching  u(x,t), a 
horizontal deflection v(x,t), a vertical deflection w(x,t) 
and a torsional  deformation ϕ(x,t). 

 
The beam deformations and their partial derivatives are 

assumed to be small, shear due to bending, warping due 
to torsion, air viscous friction are neglected. 

 

 
 



1. Kinematics 

     
Front 
view 

Top View 



 Let R0 be an inertial frame with origin O0, R1 a frame 

attached to the motor with origin O1 that coincides with 
O0 and Rdm a frame attached to the cross-section of mass 
dm whose axes are parallel to those of R1 before 
deformation and whose origin Odm is the center of the 
cross-section that is at a distance x from O1 along the 

neutral axis of the link before deformation. 

 
The position of Odm relative to R1 expressed in R1 after 

deformation is: 

 

 



The rotation matrix of Rdm relative to R1 after deformation 

 

 

 

 

 

Rdm is verified to be orthogonal to the second-order of 
Taylor expansion in the deformation variables. 

  



 

Let P be a point of the cross-section with (x,y,z) its 
coordinates relative to R1 before deformation.  

The position of P relative to R1 expressed in R1 after 
deformation is given by: 

 

 



 Let R2 be a frame attached to the free end of the link whose 
origin is O2 and obtained from Rdm by replacing x by L.  

If the position payload center of mass C relative to R2 
expressed in R2 is given by: 

 

 

Then the position of C relative to R1 expressed in R1 is: 

 

 



The angular velocity of R1 relative to R0 expressed in R0 is: 

 
 

The angular velocity of Rdm relative to R1 expressed in R1 is 
found using this matrix 

 

 

Hence  

 

 

 

 



The Taylor expansion of                to the second-order in the 
deformation variables and after simplification gives: 

 

 

 

 

The gravity vector is represented in R0 by:  

   

 



2. Dynamics 
 
  Kinetic Energy: 
 
 
The kinetic energy T of the system is the sum of kinetic energies of the base, the link and the 

payload linearized to the second order. 
 
 
Where  
 
 
 
 
IB is the base inertia about the Z0 axis. 
 
 
 
 

    



  

 

 
 

 

ρ is the mass density of the beam that is considered 
homogeneous  



 

 
Where 

 

Hence 

  

   



Potential Energy: 

 
The potential energy V of the system is the sum of potential 

energies of the base, the link and the payload linearized 
to the second order. 

 

 

The potential energy VB of the base which is its 
gravitational potential energy equals a constant CB 

 



   
The potential energy of the link is the sum of its 

gravitational potential energy and its strain energy: 

 

 

 

 

Vgravit is the gravitational potential energy of the link that 
equals: 

 

 

 



Vstr is the strain energy of the link and it is the sum of strain 
energies due to different strains: 

 

 

 

Where 

 

 

 



E and G are the young modulus and the shear modulus of 
the beam material respectively. 

 

The potential energy of the payload is its gravitational 
potential energy that equals: 

 



3.Rayleigh Dissipation Function 

 
Rayleigh dissipation function R  is the expression of  the 

energy dissipated due to motor friction and internal 
damping effect of each deformation (u, v, w, ϕ), the 
dissipation is based on the Kelvin-Voigt model whose 
expression is given by: 

 

 

 



Where 

 

 

 

 

The positive constant bm is the motor viscous friction 
coefficient. 

 

C x, Cy, Cz are the internal damping coefficients along the 
x axis, the y axis, the z axis respectively, and CΦ is the 
torsional internal damping coefficient. 

 

 

 

 



4.Motion equations 

 

The utilization of extended Hamilton principle yields the 
motion equation and boundary conditions. 

 

 

where δζ is the variation of work done by the dissipative 
forces whose expression is derived from Rayleigh 
dissipation function as follows 

 

 



The beam is clamped at the joint: 

 

 

 

The dynamic equation associated with θ is : 

 

 



The equation satisfied by u: 

 

 

The equation satisfied by v: 

 

 

 

The equation satisfied by w: 

 

 

 

The equation satisfied by Ф: 

 



Since the beam at x = L, has a free end the boundary 
conditions are: 

 





u, v, ϕ must also satisfy these conditions: 

 

 

 

 

and w must satisfy  

 

 

Where 

 

With   

 

 

 



F is the weight of the payload and equals mpg. 

I is the second moment of area of the beam that have a 
circular cross-section and equals: 

 

 

 

δ is the foreshortening term due to the bending of the 
beam, expressed by: 

 



• Discussion 
 The motion equations are decoupled when the motor 

rotate with constant angular velocity 

 

 

 

The equation satisfied by v yields  

 

Taking the time derivative of the equation satisfied by u 

 and using the last equation yields the PDE verified by v 

That can be expressed by : 

 

   



The equation satisfied by w yields  

 

 

Taking both  time and spatial derivatives of the equation 
satisfied by ϕ and using the last equation yields the PDE 
verified by w that can be expressed by:  

 

 

 

Where L1,  L2, L3, L4   are linear operators. 

 



 

 The mathematical problem: 

 Solving the previous partial differential equations with 
coupled boundary condition. 

 The quest is to find a numerical method that yields stable 
solutions 



• Conclusion 

 

 
The single-link flexible manipulator's mechanical modeling 

relies on solving the coupled PDE of motion. Once the 
solutions are established, the mechanical modeling could 
be extended to flexible serial link manipulators, which 
will allow the development of new techniques for robust 
control of their movements. 
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