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Abstract: Parkinson’s disease (PD) is one of the most common neurodegenerative diseases, affecting 15 

millions of people worldwide, especially the elderly population. It has been demonstrated that 16 

handwriting impairment can be an important early marker for the detection of this disease. The aim 17 

of this study is to propose a simple and quick way to discriminate PD patients from controls through 18 

handwriting tasks using machine learning techniques. We developed a telemonitoring system based 19 

on a user-friendly application for drawing tablets that enabled us to collect real-time information 20 

about position, pressure, and inclination of the digital pen during the experiment and, simultane-21 

ously, to supply visual feedback on the screen to the subject. 22 
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 24 

1. Introduction 25 

Parkinson’s disease (PD) is one of the most common neurodegenerative disorders in 26 

the world, second only to Alzheimer’s disease [1]. The differential diagnosis of PD is still 27 

an open challenge for the scientific community: to this day, a confirmation of the disease 28 

is available only postmortem, and the rate of misdiagnosis is high: it has been estimated 29 

that 25% of the diagnoses are incorrect [2]. The main cause of PD is the lack of dopamine 30 

production, and its main motor symptoms are bradykinesia, tremor, and rigidity [3]: neu-31 

rologists rely on imaging techniques, such as MRI (Magnetic Resonance Imaging), CT 32 

(Computed Tomography) or PET (Positron Emission Tomography), and patient’s clinical 33 

evaluation [3]. Machine learning techniques have been studied to help the diagnosis of 34 

PD and have shown promising results. Pereira et al. presented a review on recent studies 35 

concerning computer-assisted methods to aid PD recognition [4], that include speech, gait 36 

and handwriting analysis. 37 

In this study, we focused on handwriting of PD’s subjects: handwriting requires a 38 

complex coordination of consecutive movements, and the motor symptoms of PD can 39 

provoke handwriting impairments on the size of letters, that is referred to as mi-40 

crographia, and on the pressure and kinematics of the pen [5,6], together with a general 41 

difficulty of writing which involves different graphological patterns. Since “graphology 42 

is a discipline that deals with the dynamic study of the graphic gesture” [7], we based our 43 

analysis on computational graphology. Several studies have investigated the most rele-44 

vant writing features and tasks to be executed for the diagnosis of PD. In [8] is presented 45 
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the state of the art of these studies. It is possible to collect relevant information from draw-1 

ings (Archimedean spiral [9–14], circles [15], meanders [12,13], etc.) and from handwritten 2 

words and graphemes. The drawing of an Archimedean spiral (spirography) is a common 3 

task for tremor and other movement disorder analysis [9]. Thanks to the development of 4 

digitizing tablet technologies, it is possible to analyze not only the offline image, but also 5 

the kinematic characteristics of the graphic signal and the pressure applied on the tablet 6 

[16,17]. “Online” data are those collected while the user writes, while “offline” data are 7 

those available after the writing is completed [18]. In the last decade, important databases 8 

have been presented in order to study handwriting impairments in PD: the PaHaW data-9 

base [10], that includes real-time data (pen-position, pen-pressure, pen-inclination) col-10 

lected from 38 PD patients and 37 control subjects and the HandPD [12] and NewHandPD 11 

[13] databases, that include offline images collected by Pereira et al. 12 

Dròtar et al., analyzing the PaHaW database, obtained an accuracy of 85.61% [19]: 13 

they demonstrated the relevance not only of the on-tablet movements, but also of the in-14 

air movements, i.e., variation of the pen position while the pen is not touching the table. 15 

Considering only the spiral task, they obtained an accuracy of 62.8% [11]. 16 

The aim of this work is to analyse handwriting signals from both PD’s patients and 17 

control subjects and to propose a way to automatically distinguish these two classes. In 18 

order to collect the necessary data, we developed a telemonitoring system based on a user-19 

friendly application for drawing tablets that enabled us to collect real-time information 20 

about the digital pen during the experiment and, simultaneously, to supply visual feed-21 

back on the screen to the subject. Through this system, data can be collected remotely, in 22 

order to allow patients to execute tasks in the comfort and safety of their home, reducing 23 

the demand on hospital services. 24 

2. Methods and Materials 25 

In this study, we collected data from 22 healthy subjects. All participants are right-26 

handed, with an age in the range (55 ± 15y). Information about subjects’ age, gender, di-27 

mension of the hand and level of education are collected in Table 1. The educational level 28 

was classified according to the UNESCO’s ISCED 2011 (International Standard Classifica-29 

tion of Education) [20]. This classification distinguishes nine levels of education, from 30 

early child education (level 0) to doctoral or equivalent level (level 8). These levels can be 31 

aggregated in three categories: low (0–2), medium (3–4), high (5–8) [21]. The hand’s di-32 

mension has been quantified measuring the distance between the wrist and the top of the 33 

distal phalanx of the dominant hand’s middle finger. 34 

A commercial drawing tablet with screen “Wacom One” was used for this test, in 35 

order to be able to extract both “online” and “offline” features. Wacom tablets are widely 36 

used in handwriting movement analysis, as they offer high spatial and temporal resolu-37 

tion [8]. 38 

Table 1. Subjects’ data. 39 

Age (Mean ± sd) Number Male/Female 

Middle Finger–Wrist 

Distance (cm) (Mean 

± sd) 

Level of 

Education 

(ISCED 2011)  

(Mean ± sd) 

55.8 ± 6.5 8/14 19.6 ± 1.8 5.1 ± 2.1 

An application has been developed by our team using Unity, a development plat-40 

form, which allowed us to collect information about pen position (𝑥, 𝑦), pressure and in-41 

clination with a frequency of 133 Hz and, simultaneously, to supply visual feedback on 42 

the tablet’s screen to the subjects. The application has a start page, where it can be inserted 43 

participant’s ID and that includes a menu, where the user can choose which task to take. 44 

In order to analyse the data, we used the software MATLAB. 45 
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The protocol was divided in four parts: drawing an Archimedean spiral, writing the 1 

bigram “le” six times and two Italian sentences, drawing ten concentric circles and writing 2 

seven lines of free text. For each part of the protocol a different screen was shown to the 3 

subject: firstly, an image of an Archimedean spiral was shown, and the subject was asked 4 

to trace it at a comfortable speed; secondly, a blank screen was shown, and the subject was 5 

asked to write in cursive 6 times the bigram “le”, and two Italian phrases: “I fiori sono sul 6 

prato” and “Nel cielo ci sono le stelle”. On the third screen, a circle was shown, and the 7 

subject was asked to draw ten concentric circles inside it. Lastly, a blank screen was 8 

shown, and the subject was asked to write in cursive seven lines of free text. The overall 9 

duration of the test varied between 10 and 15 min from subject to subject. The subjects 10 

have been given the opportunity of trying the tablet before the test. During the execution 11 

of the tasks, the subjects were sit in a comfortable position on a chair without armrests, 12 

and the tablet was positioned on a table in front of them. 13 

Features were extracted from each task separately. 14 

Data were separated into components, i.e., lines that are traced without lifting the 15 

pen from the tablet. In order to do that automatically, indices of the samples where pres-16 

sure goes from positive to zero and vice versa were saved in a vector of markers. Both in-17 

air and on-tablet features were extracted. 18 

Figure 1 shows an example of the task “bigram le”, where the different components, 19 

automatically detected, are represented in different colours and the “in-air” points of the 20 

pen-position are represented as blue points. For each component, the velocity was calcu-21 

lated as 22 

𝑣 = √𝑣𝑥
2 + 𝑣𝑦

2, (1) 

where 𝑣𝑥 =  
𝑥𝑖+1−𝑥𝑖

𝑡𝑖+1−𝑡𝑖
 and 𝑣𝑦 =  

𝑦𝑖+1−𝑦𝑖

𝑡𝑖+1−𝑡𝑖
. 23 

Acceleration and jerk of the components also were calculated. To analyse the spiral, 24 

the angular and radial velocity were calculated. Furthermore, the distance of the drawn 25 

spiral from the spiral guide was calculated with the following algorithm: 26 

1. For each point of the drawn spiral (𝑥𝑖 , 𝑦𝑖), we found the spiral guide’s closest point 27 

to it, (𝑠𝑥𝑖 , 𝑠𝑦𝑖). 28 

2. We calculated the distance of each couple of points (𝑥𝑖 , 𝑦𝑖), (𝑠𝑥𝑖 , 𝑠𝑦𝑖), as 29 

𝑑𝑖 =  √(𝑥𝑖
2 − 𝑠𝑥𝑖

2) + (𝑦𝑖
2 − 𝑠𝑦𝑖

2) (2) 

3. We found the parameter 30 

𝑝 =  ∑ 𝑑𝑖
2

𝑖 ,  (3) 

that describes how much the drawn spiral is distant from the spiral guide. Smaller p 31 

means a higher precision. 32 

 33 

Figure 1. Image of the “bigram le” task wrote by an healthy control subject from our dataset: the 34 

points “in-air” of the pen-position are represented in blue. Different components of the “on-tablet” 35 

pen-position are represented in different colours. 36 
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In order to develop a model for automatic classification of PD, we used data from 36 1 

PD’s subjects and 35 healthy control subjects from the PaHaW dataset and data from the 2 

20 healthy control subjects that we collected in our database. Two tasks that the two data-3 

base have in common have been analysed: the guided spiral and the bigram “le”. The 4 

features that have been considered are reported in Table 2. 5 

Table 2. Features extracted: 1 if the feature was extracted from the spiral task analysis, 2 if the feature 6 

was extracted from the “bigram le” task analysis. 7 

Features Task 

Velocity: absolute, vertical, and horizontal 1,2 

Acceleration: absolute, vertical, and horizontal 1,2 

Jerk: absolute, vertical, and horizontal 1,2 

Radial velocity 1 

Angular velocity 1 

Variation of velocity, acceleration, and stroke between components 2 

Number of changes of direction in velocity 1,2 

Number of changes of direction in acceleration 1,2 

Number of changes of direction in jerk 1,2 

Normalized in-air time (time in air over total time) 1,2 

Velocity on-air: absolute, vertical, and horizontal 2 

Acceleration on-air: absolute, vertical, and horizontal 2 

Jerk on-air: absolute, vertical, and horizontal 2 

3. Results and Discussion 8 

In order to discriminate between PD patients and healthy control subjects, three mod-9 

els have been constructed: one using only data from the spiral task, one using only data 10 

from the “bigram le” task, and one using data from both of them. A 10-fold cross-valida-11 

tion was conducted. Results are reported in Table 3. Accuracy, specificity, and sensitivity 12 

was calculated in terms of TP (true positive), FP (false positive), TN (true negative) and 13 

FN (false negative), as: 14 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (4) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 (5) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝐹𝑁 + 𝑇𝑃
 (6) 

Table 3. Model used and classification accuracy, specificity, sensitivity of the two tasks. 15 

 Model Accuracy Specificity Sensitivity 

Spiral Linear SVM 74.2 % 82.4% 62.1% 

le Fine KNN 80.6 % 82.4% 77.8% 

Spiral and le Linear SVM 84.9 % 87.8 % 80.5 % 

Considering the two tasks separately, we obtained a higher accuracy for the “bigram 16 

le” tasks than for the spiral tasks. Moreover, considering the spiral and the “bigram le” 17 

task separately, accuracy that we obtained for the spiral (74.2%) is higher than the accu-18 

racy obtained for the spiral by Dròtar et al. (62.8%) and, similarly, considering only the “le 19 

bigram” task, the accuracy that we obtained (80.6%) is higher than the accuracy obtained 20 

by Dròtar et al. for this task (71%). The highest accuracy (84.9%), specificity (87.8%) and 21 

sensitivity (80.5%) are obtained combining the two tasks. The machine learning algo-22 

rithms that have been employed were the support vector machines (SVM) for the spiral 23 
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task and the combined tasks, and the fine k-nearest neighbors (Fine KNN) for the “bigram 1 

le” task. 2 

4. Conclusions 3 

In this study, an application that allowed us to register data from tablets with a fre-4 

quency of 133 Hz was presented, to aid the recognition of PD through handwriting im-5 

pairments. The tool that is proposed is simple and easy-to-use, allowing subjects to make 6 

the test in the comfort of their home. Data from 22 healthy subjects were collected and 7 

added to the PaHaW database [10,19], a pre-existing dataset that includes data from PD’s 8 

patients and healthy control subjects. Using only two of the eight tasks that the PaHaW 9 

database includes, an accuracy of 84.9%, was obtained, close to the 85.61% accuracy that 10 

Dròtar et al. obtained considering all the eight tasks together [19]. We couldn’t compare 11 

the other tasks because the first language declared from our subjects (Italian) was different 12 

from the first language of the PaHaW database’s subjects (Czech). However, the protocol 13 

that we developed can be used in future studies to collect data from Italian PD’s subjects. 14 

This work is part of a home-monitoring project, that aims to aid the PD’s detection 15 

through a combined analysis of the graphological and vocal signal [22]. 16 
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