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Abstract: Analytical modeling and numerical simulation of multiphysics coupled systems is an
exciting research area, even when it comes to intrinsically linear or linearized formulations, as
is usually the case with coupled vibroacoustic problems. The combined effect of many localized
geometrical miss-modeling with significant uncertainty in mechanical characterization of some
organic materials yields large discrepancies in the natural frequencies and mode shapes obtained.
The main goal of this work is to compare two basic approaches for the modeling of stringed musical
instruments in the frequency domain: simplified lumped-parameters analytic modeling, considering
only the most influencing degrees-of-freedom, and discretized finite element modal analysis. Thus,
the focus is on a review of some key references in this field, including previous work by the authors,
which should shed some light on some of the most relevant questions surrounding this problem.

Keywords: Classical guitar; lumped-parameters modeling; finite element method; vibroacoustics;
frequency domain; musical instruments; luthier.

1. Introduction

Due to the diversity of phenomena involved in the modeling of musical instruments,
and the difficulties inherent in formulating the vibroacoustics and various underlying
possible dissipating effects, and despite the availability of some classical and computational
approaches, this task remains a significant challenge after many years. It’s amazing that,
despite the huge global popularity of plucked stringed instruments, such as the guitar,
scientific research into the piano and violin began much earlier, paving the way for the
application of similar principles to the modeling and study of classic guitars.

One may wonder, however, to what extent are analytical models completely exact?
Though convergence towards the analytic solution is mathematically granted for methods
such as, e.g., the finite or boundary elements [3], to what extent can we call this result
correct? This article is intended to discuss the above questions contrasting two major
approaches when it comes to acoustic guitar modelling. On one hand, a quantitative
analysis can follow a familiar approach among engineers and more practically-oriented
researchers: the quest for an equivalent model capable of yielding a sufficiently accurate
approximate result, given that model parameters lie inside a broad-enough range of
permitted variations – this paradigm is eventually called gray box modelling, because it
does not rely entirely neither on experimental identification nor on analytical modelling.
Usefulness has proven to be the key feature here, with the loss of accuracy perceived
as a minor drawback in comparison with some gains expected for a computationally
inexpensive model. On the other hand, lies the demand for high fidelity descriptions of
physical reality, where a number of numerical methods could be employed to discretize the
system into a set of algebraic linear equations – finite element (FE) models standing by far
as a preferred option. Thus, bigger descriptions can be obtained, even though they should
unavoidably require greater sets of input data certainly contaminated by some amount
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of uncertainty. Thus, model updating has become a standard practice both in academic
research and industry (commercial software) applications [4]. It is important to note from
its definition, however, that the whole model uncertainty remains distributed over the
parameters in an unpredictable, possibly overlapped manner, consequently rising serious
concerns about uniqueness of obtained solutions [5]. And these issues become evidently
more severe for huge complex models with possibly hundreds of free parameters. Thus,
its clear that a delicate trade-off emerges at this point for those situations where a smaller,
less detailed model, could still bring useful results while providing valuable gains from
narrower bounds on uncertainty propagation.

2. Simplified Guitar Models

Even as a complex and truly instigating system, the construction of musical instru-
ments still relies almost solely upon traditional knowledge in the great majority of famous
luthieries, with an increasing number of academic researchers trying to establish this bridge
out of a personal passion [12]. Things were slightly different to a guitar’s close relative:
the violin, been for long time a learned instrument, it has naturally attracted researchers’
attention earlier than its plucked-string cousin. Thus, Schelleng [10] proposed, already in
60’s, an analogue 2nd order electro-magnetic resistance–inductance–capacitance – RLC –
circuit that could emulate the elasto-acoustic interactions of top plate mechanical properties
– mass distribution, stiffness and damping – with the air confined inside and surrounding
the resonant chamber. Firth [11] adapted the analogue circuit to the dynamics of acoustic
guitar, relating electrical quantities to the most clearly important structural and acoustical
parameters. Although valuable for those familiar with electrical–mechanical analogy (a
standard theoretical apparatus in classical control theory) this approach eventually gave
place to a rather direct description of the coupled phenomena. Thus, Caldersmith [12]
devised, constructed and measured a simple resonator composed by parts with similar
functions as those pointed in [11], and Christensen [14], relying upon these concepts and re-
lated equations [10–12], presented a simplified 2 degrees-of-freedom (DOF) model derived
from purely mechanical considerations, focusing on the relations between 1st and 2nd
coupled modes and their intermediate Helmholtz anti-resonance, where almost all model
parameters (with exception of those related to damping) can be obtained from simple
measurement of these 3 frequencies. This work greatly simplified the resulting model,
thereby bringing timely applicability and physical insight to subsequent developments.
On this way, Caldersmith [13] introduced a straightforward yet important modelling re-
finement by taking into account the contribution of back plate flexibility in the coupled
dynamics, resulting in a 3 DOF system for the resonant chamber, and French [6,15] tested a
procedure for identification of model parameters and prediction of structural modification
based on the sensitivities of eigenvalues for both 2 and 3 DOF models. Finally, the last
extension to this simplified modelling approach was presented in [16], where additional
mass and motion DOF were considered for the ribs, neglecting, however, any associated
stiffness to this region. Following [14], here as well model parameters can be obtained,
with exception to dissipative coefficients, from simple measurements. Top and back plate
bending are represented by that of a thin axisymmetric disk corresponding approximately
to the region circumscribed by the lower bout, in an average condition between hinged and
clamped. This way theoretical approximate expressions could be obtained for the enclosed
air volume variation as the product of equivalent plate area and displacement.

2.1. Formulation of Simplified Models and Definition of Parameters

In what follows, the equations of these simplified models discussed above will be
presented, trying to keep clarity and conciseness such as possible. The meaning of each
index adopted in the development of equations below is shown in Table 1 (for explanation
on guitar components refer to Figure 1 below). Table 2 bellow presents the parameters
appearing in the equations of 4 DOF model [16]; it should be noted that those appearing in
the equations for 2 and 3 DOF models [6,13,14] are also covered in this table, but some table
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entries do not apply for the simpler models. Damping coefficients are presented separately
because these parameters are to be defined through experimental modal analysis.

Table 1. Meaning of the indexes used in the various vibroacoustic
models of the classic guitar.

Index Meaning

t Top plate
a Air column through the sound hole
b Back plate
r Ribs (i.e., the remaining parts moving as a whole)

Table 2. Equivalent parameters of all 3 models.

Symbol Description Unit

V Air volume inside the resonant chamber m3

ma Equivalent mass of the air column kg
mt Equivalent mass of the top plate kg
mb Equivalent mass of the back plate kg
mr Equivalent mass of the ribs kg
Aa Equivalent area of the air column m2

At Equivalent area of the top plate m2

Ab Equivalent area of the back plate m2

kt Equivalent stiffness of the top plate N/m
kb Equivalent stiffness of the back plate N/m

ζr, ηr r-th mode damping coeff. (r = 1, .., 4) −

About the damping parameters in Table 2, it is important to emphasize at this point
that these coefficients alone would imply, for instance, a purely viscous, or viscoelas-
tic/hysteretic dissipation behaviour, which is clearly a non-physical assumption consider-
ing the predicted forms of energy loss in the modelling of vibro-acoustic coupled systems;
i.e., the energy balance in this cases should include, at least, some sort of viscous, viscoelas-
tic and acoustic radiation forms of damping [7,17]. Indeed, for those parameters related to
energy dissipation, that equivalent modelling approach mentioned earlier is almost always
adopted – with damping ratios, loss factors or another dissipation quantifier accounting
alone for all forms os energy loss.

Body

Fretboard
Headstock

Neck

Soundboard, or top plate

Bridge

Saddle

Ribs, or body sides

Strings

Sound hole

Back, or Bottom plate

Heel

Frets
Nut

Pegs, or tuning machines

  

Figure 1. Acoustic guitar parts. [Source: adapted from
original image due to William Crochot, distributed
under CC BY-SA 3.0 license; Wikimedia Commons].

ma
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V

Top Plate

mt

kt

xa xt

(a) (b)

Figure 2. Schematic of the simple 2 DOF model: (a) Cut plane view of a
guitar resonant chamber 3D CAD model, constructed with shells, planes
and lines for subsequent FE analysis. (b) Representation as a simple 2
DOF model, considering only the movement of top plate and air column.

2.1.1. Simplified 2 Degrees-of-Freedom Model

Now, suppose the tensions in guitar strings transmit a force of magnitude f through
the bridge (see Figure 1), that can be represented as acting pointwise, up and down, in the
centroid of top plate. Thus, the equations of movement representing the dynamic coupling
with the air column DOF displayed in Figure 2 can be written as:

mt ẍt + ktxt − ∆pAt = f , ma ẍa − ∆pAa = 0. (1)

Considering the adiabatic, linearised form for the equations of acoustics, the pressure
variation ∆p may be expressed in terms of the total volume V inside the resonant chamber,
the sound velocity c and mass density ρ of the surrounding air, and of the (idealised)
chamber volume increment ∆V = Atxt + Aaxa [8]:

∆p = −ρc2 Atxt + Aaxa

V
. (2)

Then, substituting in Equation 1 and putting in matrix form, yields:
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[
mt 0
0 ma

][
ẍt
ẍa

]
+


kt +

ρc2 A2
t

V
ρc2 At Aa

V

ρc2 At Aa

V
ρc2 A2

a
V


[

xt
xa

]
=

[
f
0

]
. (3)

Quantities appearing in the left-hand side of Equation 3 could be viewed separately into
two classes: those described in Table 2 depend on geometric and/or material properties of
guitar components, and thus shall be treated as adjustable parameters of the equivalent
system, while the remaining ones (speed of sound and mass density) are physical properties
of surrounding air, and so it is more reasonable to consider them as system-independent
constants. On the other hand, driving force f would be truly impossible to obtain, both
experimentally or analytically, because this excitation motion is rather imposed by an
effectively distributed conjugate on the interfacing area between the top plate and the
bridge; i.e., its much higher stiffness impels it to rotate when forced to and fro by the
tension of guitar strings, acting some distance above the plate. Theoretically, once the plate
is adequately approximated (to some level of accuracy) as a clamped or hinged plate [16]
an equivalent pivot distance could be considered, via static equilibrium of moments, in
order to compare the driving force over the top plate with the tension in guitar strings.
This approach was not explored up to this moment, however, to the author’s knowledge.
Nevertheless, analytical values for modal parameters can be readily extracted from this
matrix equation, and in this way it has been extensively used for model comparison
[12,14,15], structural modifications prediction based on eigenvalues sensitivity [6,15] or
frequency domain model updating [1].

Unlike mentioned references, the previous equations were written in undamped form.
Although this choice was made primarily for the sake of cleanness in the presentation,
it has a more profound justification stemming from authors’ previous works [2] that
is: given the levels of uncertainty in these simplified models, the use of more complex,
non-proportional damping formulation would not cause any perceivable alteration in
measurable outputs. Thus, since a proportionally damped analytical system produces
the same eigenproperties as its undamped version, and tacking into consideration the
prominence of modal parameters over the forced response for the envisaged applications,
damping factors can be confidently considered here as fine tuning adjustments. Among
the myriad of available methods to extract damping coefficients (along with mode shapes
and natural frequencies) from measured responses, Subspace-Stochastic Identification (SSI)
has proven to be a very convenient, output-only, alternative [2].

2.1.2. Simplified 3 and 4 Degrees-of-Freedom Models

From the definitions presented above for 2 DOF, modelling extensions can be readily
devised. Figure 3 shows schematic representations for two of such possible expansions,
resulting in 3 and 4 DOF models, respectively. The most obvious approach then is to
consider the flexibility of back plate in a symmetrical manner as was made for the top plate.
This in turn adds up three more free parameters: for mass, stiffness and one more modal
damping also, as the system could now vibrate on three linearly independent modes. Thus,
resultant mass and stiffness matrices for 3 DOF model are written below, following [6],
where displacements vector is

x =

 xt
xa
xb

, M =

 mt 0 0
0 ma 0
0 0 mb

, K =



kt +
ρc2 A2

t
V

ρc2 At Aa

V
ρc2 At Ab

V

ρc2 At Aa

V
ρc2 A2

a
V

ρc2 Aa Ab
V

ρc2 At Ab
V

ρc2 Aa Ab
V

kb +
ρc2 A2

b
V


. (4)

The next expansion presented, the model considering mass and motion for the ribs,
is a little bit trickier and thus needs a deeper attention. First of all the motion allowed for
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the ’ribs’ in fact means that the whole guitar is free to move. Thus, this is not exactly about
freeing a motion in the same sense as it was done for the back plate, but rather to permit a
fully-free boundary condition. Although governing equations of the 4 DOF model in [16]
are not explicitly presented in matrix form, here mass and stiffness matrices were extracted
and are thus presented, where displacements vector is

x =


xt
xa
xb
xr

, M =


mt 0 0 0
0 ma 0 0
0 0 mb 0
0 0 0 mr

, K =



kt +
ρc2 A2

t
V

ρc2 At Aa

V
ρc2 At Ab

V
−kt −

ρc2 A2
t

V
+

ρc2 At Ab
V

− ρc2 At Aa

V

ρc2 At Ab
V

ρc2 Aa Ab
V

kb +
ρc2 A2

b
V

kb +
ρc2 A2

b
V

− ρc2 Aa Ab
V

− ρc2 At Ab
V

−kt 0 kb kt + kb

ρc2 At Ab
V

ρc2 Aa Ab
V

ρc2 A2
b

V
ρc2 A2

b
V

− ρc2 Aa Ab
V

− ρc2 At Ab
V


.

(5)

(a) (b)

ma
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V
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kt

xa xt

ma
ΔV

Air

V

Top Plate
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kt

xa xt
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xb

kb

Back Plate

xb xr

mb mb

Figure 3. Schematic of 3 and 4 DOF simplified models; (a) 3 DOF: allowing for motions on top and back plates, and air column through
the hole. (b) 4 DOF: basically allowing for the same motions of the 3 DOF model, plus one for the entire structure (free condition).

3. Finite Element Modelling of Acoustic Guitar Vibroacoustics

Many factors contributed to the popularity of FE modelling in the last two or three
decades, but most of all, possibly, is the great availability of sufficient computational
resources. Thus, it is not surprising that nowadays the bulk of academic research in
vibro-acoustic of musical instruments makes use of it in greater or lesser extent. Brooke
[22] was a pioneering work on the application of FE to guitar coupled vibro-acoustics.
The simplified models were employed alongside with FE modelling of the top plate and
boundary element (BE) model of surrounding air, thus achieving an organic coupling
between lumped parameters and domain discretization approaches. Elejabarrieta, Ezcurra
and Santamaría [18,19] performed fluid-structure interaction FE analyses, both for fluid
and structural domains. Fluid domain was considered only in a small air column, in a
similar fashion as was done for the lumped models discussed earlier. Neck and headstock
participations were disregarded. 8474 brick elements were used to model the structure,
while the mesh on fluid domain was adjusted to give sufficiently accurate results up to 1
kHz. Comparison of coupled and uncoupled mode shapes confirmed the physical insights
brought by lumped models and the importance of Helmholtz frequency to the lower range
coupled dynamics. Chaigne and collaborators [9,20,21] successfully employed FE and
finite differences in a full non-linear transient simulation, where considerable effort is put
in precise definition of purely mathematical aspects related to the problem well-posedness
and stability of the proposed solution procedure. Fictitious domain method was used
to avoid what they called an ’ectoplasm’, referring to the rather artificial definition of
boundaries on the fluid domain. Structural flexibility of the resonant chamber is considered
only within the top plate, disregarding fan bracing. Both these simplifications may left aside
important aspects of top plate dynamic behaviour. It is interesting to note that, despite
the clear relevance of such a complete description, these important features are especially
focused at by lumped parameters models presented above. Other instruments, closely
related to the acoustic guitar, were successfully modelled via FE analysis as well, and we
pinpoint here references [23] on Brazilian viola caipira and [24] on Colombian bandola. Both
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present detailed equations and solution procedure for the full coupled FE analysis and
solve equations using ANSYS commercial software, but in [24] a convenient symmetrized
form for the coupling matrices is introduced, and an effective length is considered for the
air column [18,19].

4. Results and Discussion

This section is intended to show some results obtained by the authors with both
kinds of modelling techniques discussed up to this point. Löw [1], updating/identification
of the 3 DOF model parameters was performed, following [6], but using some heuristic
optimization algorithms instead to minimize the sum of squared differences between
analytical and experimental FRFs. Masses were measured with 0.1 grams accuracy, and
stiffness parameters were previously estimated by static force/displacement testing, as
suggested by [11,14,15]. Figure 4 below compares the updated theoretical model with
experimental data; a modified particle swarm algorithm was used in error minimization.
Experimental data was acquired on a low quality, large-scale manufactured instrument.

Experimental
Theoretical

Experimental
Theoretical

Frequency [Hz] Frequency [Hz]

M
a
g
. 
In

e
rt
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n

ce
 [

(m
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²)
/N

]
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a
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(m
/s

²)
/N

]

(a) (b)

Figure 4. 3 DOF model analytical vs. experimental FRFs: (a) top plate; (b)
forced on top plate and measured on the back plate.

Table 3. Natural frequencies of the classic guitar
with the updated 3DOF and FE models: analytical
/ experimental results (relative deviation).

3 DOF [Hz] FE [Hz]

76.7 / 76.6 (0.1%) 75.9 / 71.88 (5.5%)
97.7 / 98.0 (-0.3%) 110.2/ 108.4 (1.6%)

182,6 / 187.2 (-2.4%) 169.3 / 209.4 (-19.1%)

For the sake of comparison, some more recent results [2] obtained for a Giannini
GWNE15, a Brazilian mid quality, partially hand-made guitar, are presented below, this
time parametrically modelled in ANSYS commercial software. The mesh used 17001 shell
elements, considering wood plates orthotropic properties. Fan bracing, struts and neck
were modelled with shell elements as well. Figure 5 below shows the FE mesh, and Figure
6 shows structural (in vacuo) modes of top and back plates. Table 3 compares experimental
and analytical natural frequencies for both models showed earlier. Bigger discrepancies in
FE model are primarily due to not considering the air-structure coupling, so it is difficult to
establish mode matching. Even so, it is clear that the greater number of available vibration
modes can be used to better represent effects associated with higher frequency range
dynamics, such as the timber of instruments, and radiation efficiency.

Figure 5. (a) Giannini catalog photo for model GWNE15 ; (b)
3D CAD model; and (c) resultant mesh for numerical analysis of
Giannini guitar.

Figure 6. Undamped structural modes: (a) in phase top plate
mode (75.9 Hz); (b) anti phase top plate mode (110.2 Hz); (c) first
dipole top plate mode (169.3 Hz) and (d) quadrupole back plate
mode (174.1Hz).

The simplicity and low computational burden of the lumped parameter 3D model
permitted an easy application of an optimization routine to curve-fit structural parameters
to reproduce low frequency range dynamic behaviour with good agreement. Phase angles
were not taken into account in the error function and some acceptable agreement was
verified as well, thus bringing reliability to the obtained parameters values. On the other
hand, a numerical approximate solution of partial differential equations makes it easy
to visualize mode shapes, obtain dozens of natural frequencies, maybe more than one
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hundred if one needs and has sufficient computational resources, accounting for global
and local contributions as well. It should be mentioned, however, that FE results are largely
affected by a significant number of purely numerical issues, such as element distortion
(close to singular, or even negative jacobian determinant), and spurious modes due to
artificial stiffness in finite element formulation.

5. Conclusion

The use of finite element (FE) element modeling is unquestionably advantageous for
systems with a high degree of complexity, coupling diverse physical phenomena, where
interesting applications for numerical analysis of musical instruments have been presented.
Although many of the FE codes are very user-friendly and non-commercial versions may be
found, these not accessible to the majority of the luthiers and the process is far too complex
for them. This article describes the classical lumped mass approach and the widely used FE
analysis for modelling and simulation of the acoustic guitar, highlighting the advantages
and disadvantages of each. There is no undisputed standard for coupled vibroacoustic
analysis, especially among users and manufacturers of acoustic guitars.
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