# Bio Innovation of a Circular Economy for Plastics Bio Innovation of a Circular Economy for Plastics

**Reducing our Plastic Imprint** Enhanced biodegradation of PET via microwave assisted green bio-based Deep eutectic solvent pre-treatment technique

Muhammad Azeem<sup>1</sup>, Olivia Adly<sup>1</sup>, Margaret E. Brennan Fournet<sup>1</sup>,

<sup>1</sup> Materials Research Institute, Athlone Institute of Technology,

### Introduction

Most plastics degradation methods are currently inefficient and are limited by processing difficulties, quality loss and diminished value. This research focuses on the development of novel mechano-chemical disintegration processes for the breakdown of waste plastics. The outputs will be biocatalysed and used as building blocks for new polymers or other bioproducts.

### Aim

The aim of the project is to use innovative green pre-treatment processes to recover lower molecular weight compounds/oligomers which will generate high performance new polymers or bioproducts.

### Objectives



- Usage of Deep eutectic solvents (DESs) in degradation of plastics (PET).
- To demonstrate enhanced biotransformation of plastics waste into bioproducts by developing an optimized pre-treatment process.



# Figure 1: FTIR analysis of DES, Pure PET and Treated PET

# TGA:

The reference PET has main weight loss at 395°C as a result of thermal decomposition but treated PET showed a lower weight loss temp around 130°C .it could be because of decrease in thermal stability depicting lower molecular weight product formation as shown in Figure.2

### Methods

Synthesis of suitable DESs
 (Via stirring and heating at desired ratios)

| Urea | Choline  | glycerol |
|------|----------|----------|
|      | Chloride |          |



2. Microwave treatment of PET powder under at optimized conditions.

Exposure time: 90 seconds, Power: 350 W,



3. Characterisations (FTIR, DSC, TGA)

#Lovelrish Research







### Results

### FTIR:

- Formation of new hydrogen bonds depicts successful synthesis of DES.
- Formation of OH group in oligomers which is not present in reference due to formation of chains containing OH,CH end groups.
- Reduction in peaks 1341 and 1241 depicts amorphous nature of materials as shown in Figure.1

# Future Work

Polymer

degradation

- Enzymatic degradation analysis will be carried out on treated plastics
- Effect of ultrasonication coupled with microwave will be evaluated.
  References
- 1. Y. Li, J. Li, S. Guo, and H. Li, "Mechanochemical degradation kinetics of high-density polyethylene melt and its mechanism in the presence of ultrasonic irradiation," Ultrason. Sonochem., vol. 12, no. 3, pp. 183–189, 2005, doi: 10.1016/j.ultsonch.2003.10.011.
- 2. T. Aarthi, M. S. Shaama, and G. Madras, "Degradation of water soluble polymers under combined ultrasonic and ultraviolet radiation," Ind. Eng. Chem. Res., vol. 46, no. 19, pp. 6204–6210, 2007, doi: 10.1021/ie070287+.

## IRISH RESEARCH COUNCIL An Chomhairle um Thaighde in Éirinn