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Abstract: The paper addresses the non-linear inverse problem of estimating the parameters1

of the Cole-Cole model used to describe the behaviour of the complex permittivity of blood2

samples. Such a model provides an efficient and accurate representation of biological tissues3

in the entire frequency band considered and reduces the complexity of the experimental data4

to a few parameters. In this way, it is possible to extract a "synthetic view" of the dielectric5

properties of tissues in such a way that more information on the glucose concentration can be6

derived, in addition to the resonance peak or phase shift. In order to perform the fitting of the7

Cole-Cole model, two different algorithms are used and compared: the Levenberg-Marquardt8

and the Variable Projection algorithms. The synthetic data present in the literature are used to9

evaluate the performances obtainable with these methods. In particular, Monte Carlo analysis10

is used in order to evaluate the accuracy and the precision that these two methods provide in11

the process of estimating the parameters involved, with respect to the starting points of the12

parameters. The results obtained show that the variable projection algorithm always outperforms13

the Levenberg-Marquardt one, although the former has a greater computational burden than the14

latter.15

Keywords: glucose measurement; Cole-Cole model; Levenberg-Marquardt algorithm; Variable16

Projection algorithm; blood dielectric properties; non-linear fitting problem17

1. Introduction18

Diabetes is a metabolic disorder that afflicts millions of people in the world. It de-19

grades the cell’s ability to absorb glucose from the bloodstream because of the improper20

regulation of insulin hormone. For this reason, great efforts have been dedicated to21

the development of non-invasive glucose monitoring devices, which may considerably22

improve the quality of life for diabetics [1].23

The present work, in particular, relates to microwave sensor technology that relies24

on the change in the dielectric and conductivity properties of blood plasma as a function25

of the glucose concentration in order to track such a change.26

In this framework, developing accurate and precise fitting methods for blood27

models, at different glucose concentrations, is essential for the development of robust28

electromagnetic (EM) based techniques that could be employed for non-invasive, con-29

tinuous glucose monitoring. Indeed, accurate electromagnetic tissue modeling is of30

paramount importance since it affects the simulation stage required for sensor design31

[2]. Moreover, extracting a "synthetic view" (in terms of a few parameters) of the sensor32

response data is essential for analyzing patterns and possibly extract more information,33

besides resonance peak or phase shift, about glucose concentration.34

In this paper, the aim is just to address the fitting problem. More in details, start-35

ing from the dielectric spectrum, which is assumed known over a certain number of36

frequencies, we aim at estimating the parameters of a single-pole Cole-Cole model. As is37

well known, this entails solving a non-linear inverse problem which here is addressed38
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by two different methods: the classical Levenberg-Marquardt method [3] [4] and the39

Variable Projection algorithm [5]. We evaluate how sensitive the two methods are with40

respect to the starting points of the parameters and with what accuracy and precision41

these parameters can be estimated. In order to check the two methods, we first generate42

synthetic relative permittivities by employing a single-pole Cole-Cole model, using data43

from the literature [6] as true values for its parameters, and then solve an inverse problem44

in order to trace these values by resorting to the two aforesaid methods.45

Although higher order models can be more performing, we consider a first order46

model to perform the comparison in the simplest possible case.47

2. Methods48

2.1. Cole-Cole model49

The Cole-Cole model [7] is widely used to describe the complex relative permittivity50

of biological tissues, εr(ω) = ε(ω)/ε0, and its equation is51

εr(ω) = ε∞ +
N

∑
n=1

εsn − ε∞

1 + (jωτn)1−αn
− σ

jωε0
(1)

in which N is the number of poles and thence the order of the model, ε∞ = limω→∞ εr(ω)52

is the permittivity at high frequencies, σ is the static ionic conductivity and εsn =53

limω→0 εr(ω) , τn and αn are the static permittivity, the relaxation time constant and54

the so-called distribution parameter of the n-th addend of the summation, respectively.55

Such a model incorporates the Debye model [8]. Indeed, the main difference between56

the Debye and the Cole-Cole models is that the latter includes the exponent 1− α, with57

0 ≤ α ≤ 1. When the exponent becomes smaller, the relaxation time distribution becomes58

broader, i.e., the transition between low- and high-frequency values becomes wider and59

the peak on imaginary part of the spectrum also becomes wider.60

The complexity of both the structure and composition of biological material is such61

that dispersion region of each pole may be broadened by multiple contributions to it. The62

broadening of the dispersion could be empirically accounted for by using the Cole-Cole63

model [9]. It is for that reason that the Cole-Cole model is expected to give more accurate64

dielectric spectrum curve-fitting.65

2.2. Curve fitting Algorithms66

Let be x the vector of model parameters and P its length, M the number of frequency67

points the measures are taken. We define the data vector (T stands for transposition)68

y =
[
y(ω1) . . . y(ωm) . . . y(ωM)

]> (2)

in which the mth component of the vector y is the observed value y(ωm) . Let also be69

εr =
[
εr(ω1; x) . . . εr(ωm; x) . . . εr(ωM; x)

]> (3)

the model vector, here given by eq. (1), with εr(ωm; x) being is the estimation at ωm.70

Solving the least squares problem means finding x̂ such that71

x̂ = arg min
x∈RP

{
1
2
‖εr(x)− y‖2

2

}
(4)

in which the function to minimize, Ψ = 1
2‖εr(x)− y‖2

2, is the `2 quadratic norm of the72

misfit r = εr(x)− y, which is a non-linear function such that r : RP 7→ RM with P� M.73

We address the non-linear fitting problem with two methods: the Levenberg-74

Marquardt Algorithm (LMA) and the Variable Projection Algorithm (VPA).75

The Levenberg-Marquardt Algorithm [3] [4] acts more like a gradient-descent76

method when the parameters are far from their optimal value, and acts more like the77
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Gauss-Newton method when the parameters are close to their optimal value [10]. The78

equation for the step h at the kth iteration is79 (
J(xk)

> J(xk) + λk I
)

h = −J(xk)
> f (xk) (5)

where J is the Jacobian of f and λk is the damping parameter. It controls both the80

magnitude and direction of h and it is chosen at each iteration. It can be shown [4] that,81

at each iteration, eq. (5) solves the minimization problem over a reduced set of admissible82

solutions, i.e., those that satisfy ‖h‖ ≤ R(λ), limiting the correction step to within a83

region near xk. The radius of the trust region R = R(λ) is a strictly decreasing function84

with limλ→∞ R(λ) = 0. When λk = 0, the step h is identical to that of Gauss-Newton85

method, i.e., the same direction and maximum magnitude. As λ→ ∞, h tends towards86

the steepest descent direction, with magnitude tending towards 0.87

Based on the above, we infer the qualitative update rule for λk+1: if Ψ(xk + h) <88

Ψ(xk) then the quadratic approximation works well and we can extend the trust region,89

i.e. it will be λk+1 < λk. Otherwise, the step is unsuccessful and we reduce the trust90

region, i.e. it will be λk+1 > λk; in this way the next step tends towards the negative91

gradient method and a lower value of Ψ is more likely to be found.92

The MATLAB implementation has been used, in particular the lscurvefit function93

with the Levenberg-Marquardt option [11].94

The Variable Projection Algorithm [5] is a method used to solve separable nonlinear95

least squares problems. The least squares problem is said to be separable when the model96

parameters can be separated into two sets of parameters, one that enter linearly into the97

model, c = [c1, . . . , ck], and another set of parameters that enter the model non linearly,98

a = [a1, . . . , al ], so that x = [c, a]. For each observation ym of a separable nonlinear least99

squares problems, the model is a linear combination of nonlinear functions that depend100

on non linear parameters, and the model function can be written as101

εr(ω) =
k

∑
j=1

cj φj(ω; a)

The functional Ψ is written in terms of residual vector r as102

Ψ(a, c) =
1
2
‖y−Φ(a)c‖2 (6)

in which the columns of the matrix Φ are the non linear functions φj(ω; a). The linear103

parameters c could be obtained from the knowledge of a, by solving the linear least104

squares problem:105

c = Φ(a)†y (7)

which stands for the minimum-norm solution of the linear least squares problem for106

fixed a, where Φ(a)† is the Moore-Penrose generalized inverse of Φ(a). By replacing107

this in eq. (6), we obtain the Variable Projection functional108

ΨVP(a) =
1
2

∥∥∥y−Φ(a)Φ(a)†y
∥∥∥2

(8)

The Variable Projection algorithm consists of two steps: first minimizing eq. (8) with109

an iterative non linear method and then using the optimal value found for a to solve for110

c in eq. (7) [12]. The principal advantage is that the iterative nonlinear algorithm used to111

solve the first minimization problem works in a reduced space and less initial guesses are112

necessary. A robust implementation in MATLAB, called VARPRO [13], has been adapted113

and used to deal with complex-value problems, choosing the Levenberg-Marquardt114

option for the solution of eq. (8).115
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2.3. Numerical Simulations116

The generation of the synthetic complex relative permittivity of blood plasma117

relies on in-vitro data reported in [6], and precisely on data relating to concentrations118

that are more realistic from the point of view of human physiology (i.e., 250 mg/dl119

and 500 mg/dl). The data vector consists of M = 1000 points in the frequency range120

500MHz− 20GHz.121

In gradient-like algorithms (such as those used in this paper), the choice of the122

initial point is a crucial factor for the convergence of the procedure. For the single-pole123

model case, it is fairly easy to exploit the physical meaning of the parameters to infer an124

initial estimate. However, since the noise can invalidate the initial estimate, we propose125

to study the robustness of the two algorithms with respect to random initial points. To126

this end, we consider N=1000 uniformly distributed random initial points arranged in a127

5D hypercube of the parameter space. Each side of the hypercube represents an interval128

containing the range of variation of each parameter for the glucose concentrations129

considered.130

The intervals for generating the random initial value for each parameter (of the131

Cole-Cole model) are chosen from the data tabulated in [6]. In particular, the widths of132

these intervals are the same for each glucose concentration and are: [1, 5] for ε∞, [1, 150]133

for εs, [1× 10−14, 1× 10−11] for τ, [0.1− 1× 10−9, 0.1 + 1× 10−9] for α and [0, 5] for σ.134

These intervals are relatively large compared to the values taken from [6] in order to135

test the two algorithm in sufficiently stressful situations. Only the range of variation136

of α is extremely small because the model used in [6] practically fixes it a priori to 0.1.137

Obviously, it must be taken into account that VPA requires only to generate the values138

for τ and α.139

For an initial bland qualitative assessment, we established evaluation intervals140

(the same for generations) for the estimated parameters so that we could assert that a141

reconstruction is "good" if it falls within these ranges, "wrong" otherwise.142

Now, let x̂ (i) = [ε̂
(i)
∞ , ε̂

(i)
s , τ̂ (i), α̂ (i), σ̂ (i)] be the vector of the parameter estimates143

returned by the two algorithms at the i-th simulation and let x̂(i) denote one of its five ele-144

ments. Moreover, let 〈x〉 = (1/Nsim)∑Nsim
i=1 x̂i and σx =

√
[1/(Nsim − 1)]∑Nsim

i=1 |x̂i − 〈x〉|2145

be the sample mean and standard deviation, respectively, calculated for each parameter.146

For a quantitative evaluation of the performance of the two algorithms, we then147

define multiple figures of merit for characterising the results. For each parameter, eqs.148

(9a) and (9b) define measures of accuracy and precision, respectively, defined over149

the entire set of reconstructions. However, such measures can be greatly affected by150

estimates that are very far from the true value, xtrue, which the latter represents one of151

the five elements of the vector of reference values x̂true = [ε̂∞true , ε̂strue , τ̂true, α̂true, σ̂true].152

For this reason, we also introduce eqs..(10a) and (10b) in order to define accuracy and153

precision measures, respectively, that instead dampen the effect of the above isolated154

events. They are calculated on a subset obtained by eliminating the ζ% of reconstructions155

with lower values and ζ% of reconstructions with higher values, in which 0 < ζ < 50.156

A =

∣∣∣∣ xtrue − 〈x〉
xtrue

∣∣∣∣× 100% (9a)

P =
σx

〈x〉 × 100% (9b)

Acut =

∣∣∣∣ xtrue − 〈x〉cut
xtrue

∣∣∣∣× 100% (10a)

Pcut =
σxcut

〈x〉cut
× 100% (10b)
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Figure 1. Graphical representations of convergence of LMA and VPA for 1000 simulations and 2 different glucose concen-
trations: (a) LMA for 250 mg/dl, (b) LMA for 500 mg/dl, (c) VPA for 250 mg/dl, (d) VPA for 500 mg/dl;

Table 1. Figures of merit (in %) of the two algorithm in which the glucose concentration is 250 mg/dl.

ε∞ εs τ [s] α σ [S/m]

xtrue 2.04 7.21× 101 8.62× 10−12 0.1 1.96

LM
A

A 2.32× 107 5.91× 107 3.76× 108 1.51× 108 7.32
Acut,25% 3.21× 10−7 3.65× 10−10 2.60× 10−9 5.25× 10−9 8.61× 10−10

P 2.79× 103 3.16× 103 3.29× 103 3.79× 103 1.62× 102

Pcut,25% 8.37× 10−7 9.60× 10−10 6.75× 10−9 1.24× 10−8 2.27× 10−9

V
PA

A 1.64× 10−7 4.48× 10−10 7.03× 10−9 2.39× 10−8 5.42× 10−10

P 4.03× 10−7 1.11× 10−9 1.72× 10−8 5.86× 10−8 1.34× 10−9

Table 2. Figures of merit (in %) of the two algorithm in which the glucose concentration is 500 mg/dl.

ε∞ εs τ [s] α σ [S/m]

xtrue 2.67 73.1 8.88× 10−12 0.1 1.93

LM
A

A 2.33× 104 3.35× 104 2.43× 106 2.07× 106 2.09
Acut,25% 3.11× 10−7 3.84× 10−10 1.65× 10−9 5.85× 10−9 1.08× 10−9

P 1.52× 104 1.87× 103 3.16× 103 2.66× 103 7.19
Pcut,25% 7.98× 10−7 1.15× 10−9 4.47× 10−9 1.59× 10−8 2.90× 10−9

V
PA

A 1.09× 10−7 4.02× 10−10 6.04× 10−9 2.11× 10−8 4.98× 10−10

P 3.32× 10−7 1.28× 10−9 1.83× 10−8 6.53× 10−8 1.57× 10−9

3. Results157

We have conducted many numerical simulations by widening more and more the158

generation intervals. In this paper we report the case where the generation intervals are159

very large except for the α interval, due to the above explanation. In all these experiments,160

following the qualitative criterion mentioned above, VPA has always provided good161

estimations while the same is not true for LMA. In particular, in the case considered,162

LMA provided wrong estimates in about 270 simulations out of 1000, for each of the two163

glucose concentrations, while no wrong estimate was returned by the VPA. Here, by164

"wrong" estimate we mean that at least one component of the parameters vector x has a165

value that is outside its generation range. Graphical representations of those qualitative166

results are provided in Figure 1.167

Consistent with the qualitative results, considering the whole set of 1000 estimates,168

VPA exhibits excellent accuracy and precision, while this is not the case for LMA, as169

can be observed in in Table 1 and Table 2. For this reason, for the VPA only the results170

calculated by means of the eqs. (9a) and (9b) are reported, whilst for the LMA the results171

deriving from eqs. (10a) and (10b), obtained by cutting 25% of the lowest values and172

25% of the highest values, are also considered.173



Version October 16, 2021 submitted to Appl. Sci. 6 of 6

4. Discussion174

In this paper we faced the problem of fitting the dielectric spectrum of blood sample175

in order to estimate the parameters of the single-pole Cole-Cole model. In particular,176

we compared the performance of two different algorithms, LMA and VPA, in terms of177

accuracy and precision with respect to the starting points of the parameters.178

For the parameter range considered, VPA outperforms LMA in robustness with179

respect to the initial point of the algorithm. However, analyzing the figures of merit180

related to LMA, it becomes clear that there are erroneous reconstructions so far from the181

true value such that they heavily deteriorate the (standard) accuracy and precision while182

the cut versions do not suffer from this problem. In fact, once the erroneous ones are183

removed, in all other simulations the algorithm converges to the true values.184

On the other hand, VPA gives these good results because less initial guesses are185

necessary and because the iterative nonlinear algorithm used to solve the first minimiza-186

tion problem works in a reduced space. The big disadvantage of VPA, or at least of the187

implementation used in this paper, is the execution time. In our test we took advantage188

of the Parallel Computing Toolbox, using parfor loop for running the 1000 simulations.189

LMA took 7 seconds to finish them while VPA took around 170 seconds on a machine190

with Intel i9-10850K (10 physical cores), 32GB RAM and Ubuntu 21.04. This is certainly191

due to the numerous SVDs that the algorithm calculates in its runtime.192

The results are promising and the research will continue by evaluating the algo-193

rithms in increasingly realistic scenarios, including adding noise on the synthetic data.194
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