Review on Thermal Energy Storing Phase Change Material-Polymer Composites in Packaging Applications

<mark>Prepared by</mark> Tejashree Rajendra Amberkar

Doctoral Research Scholar Department of Polymer & Surface Engg. Institute of Chemical Technology, Mumbai

Prof. P.A. Mahanwar

Dean-HRD

Professor at Department of Polymer & Surface Engg. Institute of Chemical Technology, Mumbai.

Introduction

Research Problem

Of

The

container

container

0

 \succ

>

Origin

Solution

shipment

packages Conclusion

Large

Small

Introduction

- A Phase Change Material (PCM) absorbs or releases large amount of **latent heat** when it melts or crystallizes in a material-specific temperature range
 - PCMs are characterized by
 - Phase change temperature range
 - Latent heat storage capacity

2

Introduction

Origin Of The Research Problem

Solution

Large container shipment Small container packages Conclusion

Need of PCM in packaging

- Temperature sensitive food items should be served and transported at particular temperature
- Biopharma products such as vaccines and biologics loose their effectivity with temperature excursion
- Dearth of electricity and fuel in remote location is bottleneck in supply of food and life saving pharma product requiring active temperature regulation transportation

Methods of PCM incorporation

Introduction

Origin Of The Research Problem

Solution

Large container shipment Small container packages Conclusion

Large container shipment

In wall-Affect thermal gradient between inner and outer wall

In refrigeration-Affect function of compressor

Small container packages

PCM & insulation-

ALANT CTAINT A	PCM	Method	Phase transition properties	Reference
Introduction Origin Of The Research Problem Solution Large	RT 35HC RT 5HC	Macroencapsulated in wall Macroencapsulated near compressor	Delay in peak temperature by 4.3 hrs Compressor cycle reduced to 6 from 13	1
shipment Small container packages Conclusion	RT 35HC	Macroencapsulated in wall with PU foam	Peak heat load and total energy reduction of 20% & 4.7% respectively	2
	RT 5	Macroencapsulated in wall as cold plate	Maintained temperature below 12 °C for 14 long hours	3
	RT 18HC	Macroencapsulated in aluminium container in refrigeration system	Outlet air can be stabilized around 18°C for 1 hour	4

- 11

05	CHEMICAL	Te.
STILUT		OTONH
NI A		GY LT
61	ने तंत्रज्ञान	
	कमेण्यवाधकारस्ते	

Literature

RT 18HC Macroencapsulated Reduced fluctuation 5	
Introductionin refrigerationto 2.56°C from 4.3OriginOfTheResearch Problemsystem	
SolutionLauryl alcohol- octanoic acidMacroencapsulated in wall in two different chambersMaintained phase change temperature without external power supply for 9.2 hours and 6.2 hours respectively6	
ConclusionE-26MacroencapsulatedE26 gave melting7E-29in wall as cold platetime of 17200 sec1E-32Image: Conclusionfor moving truckImage: Conclusion	
Eutectic PCMMacroencapsulated in wall as cold plate in stainless steel containerMaintained phase change temperature without external power supply8	

Literature

भि तत्रडानि २२ कर्वज्येवाधिकारस्ते •	РСМ	Method	Phase transition properties	Reference
Introduction Origin Of The Research Problem Solution Large container shipment Small container packages Conclusion	RT 6	Impregnation in Ca silicate with 6 layer bubble wrap insulation	174J/g at 8ºC, 4-9 hours	9
	Sodium chloride hydrate and additive	Macroencapsulated in plastic brick without insulation	PCM and insulation show fluctuation of 1°C and 4°C separately	10
	Octanoic acid	Microencapsulated PS shell in aluminium bag without insulation	42.9J/g at 14.7°C, 6-8.8 hours	11
	Paraffin	microencapsulated in aerogel with insulation	Temperature maintenance increased with PCM layer of 5°C	12

Literature

भीटान तंत्रज्ञाने कर्मव्येवायिकारस्त्रे	РСМ	Method	Phase transition properties	Reference
Introduction Origin Of The Research Problem	${f Na_2 SO_4.}\ 10 H_2 O \ and additives$	Macroencapsulated in aluminium sheets	Maintained temperature for 9.63 hours	13
Solution Large container shipment Small container packages Conclusion	Tetradecane	Microencapsulation in PS shell without insulation	30 min	14
	OP5E aq. solution	Macroencapsulaed with insulation	Maintain temperature for more than 72 hours in the range of 2- 8°C in ambient temperature range from -20°C to 35°C	15
	PCM with suitable phase change temperature	Macroencapsulated in container wall	Maintain temperature of beverage for longer time	16

Conclusion

Introduction

Origin Of The Research Problem

container

Solution

Large

shipment

Small container

packages

Conclusion

• PCM consumption seems to be an emerging trend in various fields such as e-commerce packaging, food packaging and pharma packaging

• This presentation provides information about different packaging systems utilizing PCMs for transporting temperature sensitive products

References

- 1. Principi, P., Fioretti, R. & Copertaro, B, *Journal of Physics: Conference Series*-923, (Institute of Physics Publishing, 2017), pp 1-11.
- 2. R. Fioretti, P. Principi, and B. Copertaro, Energy Convers. Manag. 122, 131-141 (2016).
- 3. T. Shanhu, N. Binjian, L. Zixiao, J. Yi, D. Yulong, and H. Hongli, Energy Storage Sci. Technol. 9, 211-216 (2020).
- 4. B. Nie, X. She, B. Zou, Y. Li, Y. Li, and Y. Ding, Appl. Therm. Eng. 165, 114582 (2020).
- 5. B. Nie, X. She, Z. Du, C. Xie, Y. Li, Z. He, and Y. Ding, Appl. Energy **251**, 113254 (2019).
- 6. S. Zhang, X. Zhang, X. Xu, and Y. Zhao, Int. J. Science 7, 261-270 (2020).
- 7. A. Mousazade, R. Rafee, and M.S. Valipour, Int. J. Refrig. **120**, 119-126 (2020).
- 8. T.B. Radebe, Z. Huan, and J. Baloyi, J. Eng. Des. Technol. **19**, 62-80 (2021).
- 9. J.H. Johnston, J.E. Grindrod, M. Dodds, and K. Schimitschek, Curr. Appl. Phys. 8, 508-511 (2008).
- 10. D. Leducq, F.T. Ndoye, and G. Alvarez, Int. J. Refrig. **52**, 133-139 (2015).
- 11. M. Ünal, Y. Konuklu, and H. Paksoy, Int. J. Energy Res. 43, 1-11 (2019).
- 12. H. Yin, S. Gao, Z. Cai, H. Wang, L. Dai, Y. Xu, J. Liu, and H. Li, Energy Reports **6**, 1788-1797 (2020).
- 13. X. Xu, X. Zhang, S. Zhou, Y. Wang, and L. Lu, J. Therm. Anal. Calorim. **136**, 505-512 (2019).
- 14. Y. Wang, Q. Zhang, W. Bian, L. Ye, X. Yang, and X. Song, J. Sci. Food Agric. 100, 2288-2295 (2020).

11

- 15. L. Huang and U. Piontek, Appl. Sci. 7, 1-12 (2017).
- 16. R. Booska, U.S. Patent No. 20190014932 (2019).

THANK YOU !