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Abstract: Automated damage detection in Carbon-Fibre and Fibre Metal Laminates is still a chal-

lenge. Impact damages are typically not visible from the outside. Different measuring and analysis 

methods are available to detect hidden damages, e.g., delaminations or cracks. Examples are X-ray 

computer tomography and methods based on guided ultrasonic waves (GUW). All measuring 

techniques are characterised by a high-dimensional sensor data, in the case of GUW that is a set of 

time-resolved signals as a response to a actuated stimulus. We present a simple but powerful 

two-level method that reduces the input data (time-resolved sensor signals) significantly by a sig-

nal feature selection computation finally applied to a damage predictor function. Beside multi-path 

sensing and analysis, the novelty of this work is a feed-forward ANN posing low complexity and 

that is used to implement the predictor function that combines a classifier and a spatial regression 

model. 

Keywords: structural health monitoring; multipath monitoring; feature selection; analytical signal; 

classification; regression; artificial neural network 

 

1. Introduction 

Structural Health Monitoring (SHM) in Carbon-Fibre and Fibre Metal Laminates 

(FML) is used to detect and assess mainly hidden damages under the hood. Damage 

detection, classification, and localisation is part of the lower levels of SHM. SHM is an 

extremely useful tool for ensuring integrity and safety, detecting the evolution of dam-

age, and estimating performance deterioration of civil infrastructures, but relies heavily 

on the robustness and accuracy of the underlying damage feature detectors. Early dam-

age detection can avoid situations which can be catastrophic. SHM can allow efficient 

maintenance works and can avoid unnecessary inspections, furthermore, saving time 

and money. 

One prominent measuring technique for damage detection is the monitoring of 

guided ultrasonic waves resulting from stimulated ultrasonic emission. Guided Ultra-

sonic waves (GUW) interact with damages and defects resulting in a modification of the 

time-resolved ultrasonic sensor signal at a given sensor position. The difference of a 

signal from a damage interaction with the baseline is typically low and difficult to detect. 

Although, ML can exploit the relevant damage features from the sensor signals by, e.g., 

supervised training using a highly non-linear function (function graph implemented by 
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an Artificial Neural Network ANN) [1], advanced feature selection can improve the 

damage prediction accuracy and reduces the functional complexity of the predictor 

function significantly. The wave propagation depends beside material properties and the 

signal frequency from temperature and moisture (inside the material if it is a composite 

material). ANNs posing low complexity were already successful applied to damage de-

tections [2,3]. 

This work addresses a novel two-stage damage detection method that uses super-

vised Machine Learning (ML) for the training of a damage feature predictor function 

from experimental data that is able to provide binary damage classification and spatial 

damage localisation information with high accuracy and reliability even under varying 

environmental conditions. The output of a non-linear regression function graph model (a 

traditional Artificial Neural Network with sigmoid transfer functions) is a 

two-dimensional vector providing an estimated positions of a damage (and the encoded 

non-damage case). The input of this predictor function is a medium dimensional feature 

vector that is derived by envelope curve approximation of the measured raw 

time-resolved ultrasonic wave signal. The ultrasonic waves interact with the damage 

resulting in a modification of the measured signal finally providing the feature vector [4]. 

In contrast to other approaches, this approach uses multi-path measurements, i.e., signal 

recordings of different spatial paths between an actuator and a sensor covering the whole 

device under test area. The derived features are characteristics of the recorded signals 

with respect to the desired damage information. Finally, a damage predictor function is 

trained under varying environmental conditions having impact of the wave interaction 

and the derived features, here specifically the ambient and device temperature [5]. 

Beside multi-path sensing and analysis using already recorded sensor data of a CFK 

plate from the Open Guided Waves data base [6,7], the novelty of this work is a 

feed-forward ANN used to implement the predictor function that combines a classifier 

and a spatial regression model, reducing computational and memory complexity, a con-

straint for the implementation in embedded sensor node systems. 

2. Multi-Path Sensor Data 

The data source in this work is time-resolved ultrasonic signal data from an active 

measuring technique, i.e., the signal response is a result of an active stimulus. A pie-

zo-electric actuator that is coupled to the surface of the device under test (or embedded 

inside a lamnination layer like the CFK plate used in this work) injects a sine-wave like 

pulse group (about 10 waves). The guided waves propagate through the material and 

partially on the surface. The guided wave interacts with the material and potential de-

fects and damages. The damage interaction leads to a change of the original damage-free 

signal only in small part of the signal with respect of the time dimension, shown in Figure 

1 (top, right), the Region-of-Interest (ROI). The identification of the ROI is difficult, de-

pending on a-priori knowledge and the strength of damage-wave interaction that can be 

weak. Beside using the raw time series data, typically transformed in frequency or 

time-frequency space (like FFT or DWT), characteristic feature parameters should be de-

rived numerically from the signal. 
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Figure 1. A plate (device under test) is equipped with 12 piezo-electric transducers that can act as an ultrasonic actuator 

and sensor, too. Six direct paths are measured simultaneously. The time-resolved sensor data is processed by an analyt-

ical signal feature selection. 

 

Figure 2. Transducer positions T0..T11 and defect positions D1..D28. 

There are two data set groups that are available from the OGW data base feature 

different measurements with pseudo defects (positions shown in Figure 2): 

1. Five data tables with recorded GUW signals with a dynamic temperature profile 

(20–60 °C) and a sub-set of four defect positions D4, D10, D14, D24, and a base line 

measurement without a defect (named here dynamic data set); 

2. 33 data tables with recorded GUW signals at a static temperature (24 °C) and all 28 

defect positions and the base line measurement (named here static data set). 
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3. Feature Selection 

In general, the aim of feature selection is the mapping of the raw time-resolved sig-

nal data s(t) on a damage relevant and representative small set of feature parameters f→ 

by a feature selection function ψ: 
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(1) 

But the GUW depends on the temperature of the medium in which the waves 

propagate and as a result the damage features are dependent on the environmental state, 

mostly the temperature [4]. Relevant damage features are contained in the envelope of 

the signal burst, commonly related to the envelope of the dominant wave group, mainly 

the hight (max), the time point of the maximum (tmax), and the full width at half maxi-

mum fwhm. These parameters strongly dependent on the material temperature as a re-

sult of the wav propagation. Details can be found in [4]. To derive the envelope of the 

signal burst, two numerical approaches can be used: 

1. Computing the magnitude of the complex analytical signal by a Hilbert transfor-

mation of the time-resolved signal s(t (non-iterative approach); 

2. By finding the maximum signal peak and performing a constrained Gaussian peak 

fitting of the wave group around the maximum, i.e., fitting a Gaussian function to 

the envelope of the signal group (iterative approach). 

For a given time dependent signal s(t) the analytical signal sa(t) is given as: 
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The analytical signal bases basically on a convolution operation (∗) but can be de-

rived by using the discrete Fourier transforms (DFT, and fast version FFT): 
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with τ: sampling interval, ω: frequency, X: forward DFT, Z; Hilbert transform in fre-

quency domain, H: final Hilbert transform in time domain by using the inverse DFT. 
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Characteristic features fi derived from the envelope of the signal s(t) are [4] (see also 

Figure 1, top right): 

 The absolute (normalized) maximum value of the dominant envelope peak max; 

 The time position at the maximum tmax; 

 The full width at half maximum of the envelope peak fwhm; 

 And a time-of-flight parameter tof. 

All these features are dependent on the signal frequency ω, the temperature T, and 

for the normalization on the stimulus amplitude, i.e., fi = fi(ω,T), . 

4. Predictor Model Function 

A classical feed-forward fully connected neuronal network with one or two hidden 

layers is used to predict the damage position p = (x,y) in normalized coordinates x = [0,1], 

y = [0,1]. An output |p| < ε indicates the absence of a damage, i.e., x and y ≈ 0. Therefore, 

the predictor function combines a classifier and a spatial regression model, shown in 

Figure 3, reducing computational and memory complexity, a constraint for the imple-

mentation in embedded sensor node systems. 

 

Figure 3. One two-dimensional output predictor function M combines a damage classifier and a 

damage position (px = y1, py = y2) regression function 

The input of the network is a vector containing the material temperature T, the sig-

nal frequency ω, and selected features from all six straight path (φ = 0) ultrasonic signal 

measurements. Typical features derived from the feature selction process are max and 

tmax. Additional computed feature parameters are time-of-flight tof and the full width at 

half maximum fwmh. 
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(4) 

The input layer consists of ||F|| neurons depending on the selected sub-set of fea-

tures. The output layer consists of two neurons providing an estimation of the damage x- 

and y-positions, respectively. The output is normalized to a spatial range of [0.2,0.7] that 

corresponds to a geometric range of [0,0.5m]. The non-damage case is predicted if |p| < ε 

(e.g., ε = 0.02); Any px or py ∈ (0.7,1.0] or (ε,0.2) indicates a prediction error! 
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5. Functional Scaling 

The target host environment for the deployment of the damage predictor function is 

an embedded sensor node equipped with a low-resource and low-power microcontroller. 

This sensor node acquires the multi-path raw sensor signals, performs the feature selec-

tion pre-processing and the application of the predictor function. Even if the training of 

the predictor function takes place off-line, the application of the predictor function 

should be performed on-line. The predictor function consists of the signal pre-processing 

with the previously introduced feature selection algorithm, and the forward computation 

of the ANN. Tables 1 and 2 show typical computational times for the feature selection 

represented by the major part of the Hilbert transformation and the ANN application. 

Different host computer architectures and processing platforms (i.e., native machine code 

and VMs node.js and quickjs). For both algorithms there is a JavaScript and a C imple-

mentation. The Raspberry Pi Zero is a small low-power embedded computer, although, it 

is still oversized compared with material-integrated nano computers (less than 100MHz 

CPU clock and about 100 kB RAM), both algorithms can be implemented and processed 

on such low-resource systems. 

The computational complexity of the ANN is neglectible compared with the feature 

computation process (about 1:1000). For each prediction, m Hilbert transformations must 

be performed for m paths. But even using the slowest but embeddable JavaScript quickjs 

platform, the entire prediction requires less than two seconds on a RP Zero. Assuming a 

computational power ratio of 1:100 comparing the RP Zero with a material-integrated 

nano computer (e.g., the ancient Micro Mote M3), a native code implementation of the 

full predictor program requires only three second computation time, which can be still 

considered as sufficient. Probably FIR/IIR filter-bank approach approximating the Hil-

bert transform can provide an additional reduction of the computational complexity. 

Table 1. Computation times for the central feature selection (Computation of analytical signal by 

Hilbert transform) and the application of the ANN predictor model for various processing plat-

forms (gcc: C and native machine code, node.js/quickjs: JavaScript code). 

Host  Platform  Function  Performance  

Intel i5-3427U 1.80GHz  node.js 8.12  dhrystone benchmark  
5400 k 

dhry/sec  

Intel i5-3427U 1.80GHz  node.js 8.12  ann-model-14-8-2  10 μsec/pred  

Intel i5-3427U 1.80GHz  gcc 6.3 -O2  ann-model-14-8-2  0.8 μs/pred  

Intel i5-3427U 1.80GHz  node.js 8.12  hilbert-fft (4096 points)  1 ms/trans  

Intel i5-3427U 1.80GHz  gcc 6.3 -O2  hilbert-fft (4096 points)  0.5 ms/trans  

Table 2. Computation times for the central feature selection (Computation of analytical signal by 

Hilbert transform) and the application of the ANN predictor model for various processing plat-

forms (gcc: C and native machine code, node.js/quickjs: JavaScript code).

Host  Platform  Function  Performance  

Raspberry Pi Zero W 1.0GHz  node.js 8.12  dhrystone benchmark  
200 k 

dhry/sec  

Raspberry Pi Zero W 1.0GHz  quickjs 2021.3  dhrystone benchmark  8 k dhry/sec  

Raspberry Pi Zero W 1.0GHz  node.js 8.12  ann-model-14-8-2  30 μsec/pred  

Raspberry Pi Zero W 1.0GHz  quickjs 2021.3  ann-model-14-8-2  300 μsec/pred  

Raspberry Pi Zero W 1.0GHz  gcc 6.3 -O2  ann-model-14-8-2  5 μs/pred  

Raspberry Pi Zero W 1.0GHz  node.js 8.12  hilbert-fft (4096 points)  25 ms/trans  
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Host  Platform  Function  Performance  

Raspberry Pi Zero W 1.0GHz  quickjs 2021.3  hilbert-fft (4096 points)  300 ms/trans  

Raspberry Pi Zero W 1.0GHz  gcc 6.3 -O2  hilbert-fft (4096 points)  5 ms/trans  

6. Evaluation 

The existing GUW signal data [6] was taken from the OGW server and a broad set 

records signal data sets were stored in SQL tables for further processing. The feature se-

lection computation using the Hilbert transform and conventional peak analysis algo-

rithms was originally performed with Python code [4]. The predictor function was im-

plemented with a modified version of the Neataptic JavaScript ANN framework [8]. The 

experimental matrix consists of: 

 Two data sets: (D) Dynamic temperature profile (T = 20–50 °C, 4 defect positions), (S) 

Static temperature (T = 24 °C, 28 defect positions), recorded GUW sensor date from a 

500 × 500 mm CFK plate with attached pseudo defects; 

 Different feature parameter sets: {max, tmax, T}, {max, tmax, fwhm, T}, {max, tmax, 

fwhm, tof, T} 

 Different network architectures: [*I*,*H*<sub>1</sub>,*H*<sub>2</sub>,...,*O*] 

 Two different input variable scaling methods: Static, i.e., a feature is scaled equally 

for all paths with a fixed scale; Auto: a feature is scaled automatically and inde-

pendently for all paths. 

 Different Training- and Testset combinations: {D/D, D/S, SD/SD, SD/Dm SD/S} 

Due to the limited data set variance, the test of the model accuracy was tested with 

training data with different combinations of the dynamic and static temperature data 

sets. Although, Monte Carlo simulation was used to augment training data by adding 

Gaussian noise, no further data augmentation was performed. Therefore, the results 

shown in Tables 3 and 4 cannot conclude any generalization quality of the trained model. 

The position error threshold was set to 100 mm (error above is classified as an incorrect 

position prediction). The non-damage detection threshold was set to 0.05/1.0. The results 

in Tables 3 and 4 show the average defect position estimation accuracy delivered by the 

predictor function, the fraction of incorrectly located defects (position error too large), 

and the binary defect classification rates true-positive (TP, damage), true-negative (TN, 

no damage) with their negative counterparts false-positive (FP) and false-negative (FN). 

Table 3. Prediction results for ω = 40 kHz (D: Dynamic temperature data set, S: Static temperature). 

Features F→(40 

kHz)  

Model 

[Layer]  

Scal-

ing  

Training 

Data [%]  
Test Data [%]  

Mean. Pos. 

Error [%]  

Position In-

correct [%]  

TP/FP, TN/FN 

[%]  

max, tmax, T  [14,8,2]  Fixed  
D = 100, S = 

100  

D = 100, S = 

100  
3  4  100/0, 100/0  

max, tmax, T  [14,8,3,2]  Fixed  
D = 100, S = 

100  

D = 100, S = 

100  
5  9  100/0, 100/0  

max, tmax, T  [14,8,3,2]  Auto  D = 100, S = 0  D = 100, S = 0  2  0  100/0, 100/0  

max, tmax, 

fwhm, T  
[20,8,2]  Fixed  

D = 100, S = 

100  

D = 100, S = 

100  
9  16  100/0, 91/9  

max, tmax, 

fwhm, T, tof  
[26,8,2]  Fixed  

D = 100, S = 

100  
D100, S = 100  6  21  100/0, 100/0  

max, tmax, T  [14,8,3,2]  Fixed  D = 100, S = 0  
1D = 100, S = 0 
2D = 0, S = 100  

13 248  10 270  
1100/0, 100/0 
220/80, 100/0  
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Table 4. Prediction results for ω = 80 kHz (D: Dynamic temperature data set, S: Static temperature). 

Features 

F→(80kHz)  

Model 

[Layer]  

Scal-

ing  

Training 

Data [%]  
Test Data [%]  

Mean. Pos. 

Error [%]  

Position In-

correct [%]  

TP/FP, TN/FN 

[%]  

max, tmax, T  [14,8,2]  Fixed  
D = 100, S = 

100  
D = 100, S = 100  20  50  100/0, 33/67  

max, tmax, T  [14,8,4,2]  Fixed  D = 0, S = 100  D = 0, S = 100  16  36  100/0, 0/100  

max, tmax, T  [14,8,3,2]  Auto  D = 100, S = 0  D = 100, S = 0  4  3  100/0, 100/0  

max, tmax, T  [14,8,3,2]  Auto  
D = 100, S = 

100  
D = 100, S = 100  12  27  100/0, 80/20  

max, tmax, T  [14,8,3,2]  Auto  D = 100, S = 0  
1D = 100, S = 0, 
2D = 0, S = 100  

15, 260  13, 285  
1100/0, 100/0 
20/100, 100/0  

We observed that there is: 

 A high accuracy of defect classification (100% TP, 100% TN) even under temperature 

variations in the range 20–50 °C can be achieved by a network with only one hidden 

layer (8 neurons) and by using the major features max and tmax; 

 The other minor features fwhm and tof can be discarded, they show no benefit (in 

contrast, including them degrades model accuracy until the training damps them); 

 A reasonable defect localisation with an average position error below 20 mm is pos-

sible; 

 A high sensitivity of prediction results to feature parameter noise (even if low as 5% 

Gaussian noise) and feature variable scaling (static and fixed versa dynamic and 

automatic); 

 Training process and prediction accuracy shows high sensitivity on data normaliza-

tion (scaling); 

 Probably only a specialized model was trained (due to low variances in defect posi-

tions and variations of environmental parameters); 

 Suitable learning rate were chosen between 0.05 and 0.2 depending 

 A model trained by the dynamic data set (only four defects) show low accuracy for 

the prediction of the static data set (even concerning the four damages contained in 

the static data set, too) 

 The accuracy of the prediction model depends on the signal frequency (40kHz out-

performs 80kHz) 

 One hidden layer is typically suitable for achieving a high accuracy showing a low 

non-linearity degree of this problem using; 

 The training time for one model is about some minutes on a generic desktop com-

puter (JavaScript processed by node.js or in the WEB browser). 

7. Conclusions 

Using multi-path sensing of guided ultrasonic waves, advanced feature selection, 

and a simple artificial neural network we were able to detect pseudo defects applied to a 

CFK plate with a high probability (typically nearly 100%) and position accuracy (typi-

cally below 20 mm or better) in a wide range of material temperature (20–50 °C). The 

advanced feature selection bases on a Hilbert transform of the time-resolved signal data 

and maximum peak analysis. The computed features are the input vector for the ANN 

predictor functions that combines a binary damage/defect classifier with a 

two-dimensional position regression of the damage. Typically only one hidden layer 

with a few neurons is suitable to achieve high accuracy and TP/TN rates. 

It could be shown that the proposed analysis method is suitable to be implemented 

in embedded systems including material-integrated nano computers providing damage 

detection within 10 s after signal measurement, which is sufficient for a broad range of 
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applications in SHM. Using signal down-sampling and optimized implementations of 

the FFT and Hilbert transform should provide prediction times below 1 s (on an em-

bedded nano computer) The feature selection reduces the input data vector dimension 

from 4096 samples × 6 paths (24576) to lowest dimension of 14 (maximal 26 depending on 

the selected feature sub-set)! 

This work bases on already existing data lacking variance with respect to defect po-

sitions, material properties, and environmental conditions. Further investigations using 

GUW measurements for a Fibre-Metal Laminate plate are under work and should create 

a suitable training and test data set that allows assessment of the robustness and gener-

alization degree of the trained model. 
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