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Abstract: Human Activity Recognition (HAR) has been widely addressed by deep learning tech-

niques. However, most prior research applied a general unique approach (signal processing and 

deep learning) to deal with different human activities including postures and gestures. These types 

of activity typically have highly diverse motion characteristics, which could be captured with wear-

able sensors placed on the user’s body. Repetitive movements like running or cycling have repetitive 

patterns over time and generate harmonics in the frequency domain, while postures like sitting or 

lying are characterized for a fixed position with some positional changes and gestures or non-repet-

itive movements are based on an isolated movement usually performed by a limb. This work pro-

poses a classifier module to perform an initial classification among these different types of move-

ments, which would allow applying afterwards the most appropriate approach in terms of signal 

processing and deep learning techniques for each type of movement. This classifier is evaluated 

using PAMAP2 and OPPORTUNITY datasets using subject-wise cross-validation methodology. 

These datasets used inertial sensors on hands, arms, chest, hip, and ankles, which could collect data 

in a non-intrusive way. In the case of PAMAP2, the direct approach for classifying the 12 activities 

using 5-s windows in the frequency domain obtained an accuracy of 85.26 ± 0.25%. However, an 

initial classifier module could distinguish between repetitive movements and postures using 5-s 

windows reaching higher performances. Afterward, specific window size, signal format, and deep 

learning architecture were used for each type of movement module, obtaining a final accuracy of 

90.09 ± 0.35% (an absolute improvement of 4.83%). 

Keywords: Human Activity Recognition; wearable sensors; classifier module; inertial signals; con-

volutional neural networks; deep learning; repetitive movements; gestures; postures; PAMAP2; OP-

PORTUNITY 

 

1. Introduction 

Human motion modeling using wearable sensors is a studied field [1,2] with differ-

ent applications such as Human Activity Recognition (HAR) [3–6], biometrics [7], or 

health [8]. Concerning physical activity classification, human movements are usually 

modeled by a system that could recognize these activities afterward. However, each 

movement presents specific characteristics in terms of motion pattern and duration. A 

previous work [4] proposed a human motion typology to apply the most appropriate sig-

nal processing and deep learning architecture depending on the type of movement. For 

example, raw signals of repetitive movements such as running, or cycling were processed 

by a Convolutional Neural Network (CNN) while raw signals of gestures like closing a 

drawer were processed by a Recurrent Neural Network (RNN). This work highlighted 

the requirement of developing an initial module to automatically identify the type of 
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movement before selecting the best signal processing and deep learning strategy to dis-

criminate between movements inside the same group. 

The purpose of this work is to develop this initial module as a classifier of types of 

movements. In addition, this work compares the direct approach of classifying all the ac-

tivities in each dataset to the approach of using the initial classifier module to distinguish 

among the types of movements and, afterward, applying specific signal processing and 

deep learning techniques for movements inside the same group. 

2. Materials and Methods 

This section provides a description of the datasets, the signal processing, the deep 

learning approach, and the cross-validation methodology used in this study. 

2.1. Datasets 

For this work, we used the PAMAP2 dataset [9] and the OPPORTUNITY dataset [10]. 

The combination of these two datasets contains a wide variety of physical activities, in-

cluding repetitive, non-repetitive movements (gestures), and postures. Moreover, 

PAMAP2 includes 27 signals recorded under laboratory conditions while OPPOR-

TUNITY contains 113 signals recorded under wild conditions. 

PAMAP2 dataset includes recordings of 12 different physical activities: nine repeti-

tive movements (walking, running, cycling, Nordic walking, ascending stairs, descending 

stairs, vacuum cleaning, ironing, and rope jumping) and three postures (lying, sitting, 

standing). These activities were performed by nine subjects, who wore three Inertial Meas-

urement Units (IMUs) with tri-axial accelerometer, gyroscope, and magnetometer. These 

sensors collected data sampling at 100 Hz and were placed on the dominant hand, chest, 

and ankle. 

OPPORTUNITY dataset contains recordings of 21 different physical activities: one 

repetitive movement (walking), 17 gestures (open door 1, open door 2, close door 1, close 

door 2, open fridge, close fridge, open dishwasher, close dishwasher, open drawer 1, close 

drawer 1, open drawer 2, close drawer 2, open drawer 3, close drawer 3, clean table, drink 

from a cup, and toggle switch) and three postures (lying, sitting, and standing). These 

activities were performed by four subjects, who wore five RS485-networked XSense IMUs 

located in a jacket, two InertiaCube3 on each foot, and 12 Bluetooth acceleration sensors 

on the limbs. Each IMU includes a tri-axial accelerometer, a tri-axial gyroscope, and a tri-

axial magnetic sensor sampling at 32 Hz. 

2.2. Signal Processing 

We implemented a signal processing module to generate windows of physical activ-

ity. We divided the recordings into overlapped windows using a Hamming function and 

a shift of 0.25 s between consecutive windows. We evaluated the classification perfor-

mance at the window level, so if an activity transition occurred within a window, the sys-

tem tried to recognize the activity with the greater presence in the window. We considered 

different window sizes (3 s, 5 s, 10 s, 15 s, 20 s, and 25 s) but maintaining the same shift 

(0.25 s). For each window size, we analyzed both time and frequency domain signals as 

inputs to our deep neural networks. In the first case (raw data), the time samples included 

in each window directly fed the deep neural network. In the second case, the inputs were 

the module of the Fast Fourier Transform (FFT) coefficients of each window. These coef-

ficients represented the spectrum from 0 Hz to 50 Hz or 16 Hz (half of the sampling fre-

quency). We decided to limit the spectrogram to 25 Hz for PAMAP2 because the energy 

in human activities mostly concentrates in low frequencies. Regarding OPPORTUNITY, 

we considered the frequency range from 0 to 16 Hz. Figure 1 represents the signal pro-

cessing performed to the acceleration signals in both time and frequency domains for 5-s 

windows. 
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Figure 1. Signal processing performed on the inertial signals. 

2.3. Deep Learning 

A deep learning structure with a feature learning subnet and a classification subnet 

was used to distinguish between the different types of movements. This architecture was 

composed of two convolutional layers with intermediate max-pooling layers for feature 

learning and three fully connected layers for classification. Dropout layers were included 

after convolutional and fully connected layers to avoid overfitting. The architecture used 

for the PAMAP2 classifier module is represented in Figure 2. 

 

Figure 2. Deep learning architecture used in this work for the PAMAP2 classifier module. 

In this architecture, ReLU was used as the activation function in intermediate layers 

to reduce the impact of gradient vanishing effect and SoftMax is the activation function in 

the last layer to perform the classification task. The optimizer was fixed to the root-mean-

square propagation method [11] with a learning rate of 0.001. In this work, the following 

hyperparameters of the architecture were optimized for each dataset using a validation 

subset: number of epochs, batch size, number of convolutional layers, number and size of 

convolutional kernels, pooling kernel size, numbers of neurons in the fully connected lay-

ers and dropout fraction. 

Regarding the classification of activities within each type of movement, this work 

applied and optimized the architectures of the previous work [4] that proposed the typol-

ogy of types of movements: convolutional and fully-connected layers architecture for re-

petitive movements and postures and convolutional and recurrent layers architecture for 

gestures. 

2.4. Cross-Validation 

In this study, we used the Subject-Wise Cross-Validation (CV) strategy, where the 

recordings of each subject were included in separated subsets and the testing data were 

not seen during the training process. For both datasets, we performed 4 folds, using two 

folds to train the deep learning architecture, one-fold to adjust the main parameters of it 

(validation subset), and the remaining fold to test the system. This strategy followed a 

round-robin approach to evaluate the whole dataset and the results in this work are aver-

age values obtained throughout the CV procedure. This way, recordings from the same 

subject did not appear in training and testing subsets at the same experiment. In the case 
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of OPPORTUNITY, since there are only four subjects, the CV procedure becomes a Leave-

One-Subject-Out CV strategy, where the validation and testing subsets only contain data 

from one subject in each iteration. 

3. Results 

Repetitive movements are characterized by the presence of harmonics in the fre-

quency domain; in contrast, postures and gestures only have information at low frequen-

cies. However, it is possible to perform a specific gesture like drinking a cup of coffee 

while a subject is walking or while sitting. For these reasons, an approach consisting of 

two steps could be applied when dealing with gestures. The first step of the classifier 

should distinguish movements in a higher level between two groups: repetitive move-

ments and gestures during repetitive movements versus postures and gestures during 

postures. In this step, the FFT coefficients were able to distinguish between these two 

groups. During the second step, a specific module could distinguish between the types of 

movement within each previous module. For these subgroups, the FFT coefficients could 

be appropriate to distinguish the gestures while performing another repetitive movement 

or posture using the signals from the different limbs. Afterward, for each type of move-

ment, we followed the configurations of the previous work [4] that proposed the typology 

of types of movements to boost the recognition performance: raw data and long windows 

(25 s) for repetitive movements, raw data and short windows (3 s) for gestures and FFT 

and long windows (10 s) for postures. Particularizing this approach to the datasets used 

in this work, Figures 3 and 4 show the overview of the final systems of PAMAP2 and 

OPPORTUNITY respectively, including the window size and input format for each mod-

ule. These figures include the type of movement recognition performance in green boxes 

and the activity classification performance in orange boxes. In case of PAMAP2, since 

there were no gestures, an initial classifier was used to distinguish between repetitive 

movements and postures using FFT coefficients as inputs to the deep learning architec-

tures. The performance of the repetitive movements module of OPPORTUNITY dataset 

was the maximum since there was only examples from walking activity. 

 

Figure 3. Overview of classification modules for PAMAP2 dataset. 
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Figure 4. Overview of classification modules for OPPORTUNITY dataset. 

Table 1 summarizes the main results of this paper for PAMAP2 and OPPORTUNITY 

datasets. Final activity classification accuracy and confidence intervals (CI) are included 

in the tables. Direct systems performances were obtained using short windows (3–5 s) and 

optimized signal processing and deep learning techniques for each dataset: FFT and con-

volutional and fully connected layers architecture for PAMAP2 and raw data and convo-

lutional and fully connected layers architecture for OPPORTUNITY. Final activity accu-

racy of the system with classifier is obtained considering the performance of the modules 

and the number of examples per type of movement. For example, Equation (1) was ap-

plied for computing the final performance of the PAMAP2 dataset, where N1 is the num-

ber of examples of repetitive movements, N2 is the number of examples of postures and 

N is the total number of examples. Results suggest that it is possible to significantly in-

crease the recognition performance when using specific modules to distinguish the move-

ment through the movement typology. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) =
𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 𝑚𝑜𝑑𝑢𝑙𝑒 𝐴𝑐𝑐.

100
∗

(𝑅𝑒𝑝.  𝐴𝑐𝑐.∗ 𝑁1 + 𝑃𝑜𝑠𝑡. 𝐴𝑐𝑐.∗ 𝑁2)

𝑁
 (1) 

Table 1. Activity classification accuracy for PAMAP2 and OPPORTUNITY datasets. 

Experiment 
Test Accuracy (%) 

PAMAP2 OPPORTUNITY 

Direct system 85.26 ± 0.25 67.33 ± 0.33 

System with classifier 90.09 ± 0.35 68.45 ± 0.66 

4. Discussion and Conclusions 

The classifier module developed in this work allows recognizing types of movements 

to apply specific signal processing and deep learning techniques for each type of move-

ment afterward. Results suggest that using short windows (3–5 s) to discriminate between 

different types of movements is required since higher decision resolution might skip ex-

amples of gestures. After that, it is recommended to increase the window size when clas-

sifying repetitive movements or postures because the recognition performance will im-

prove. In this sense, the window size becomes a crucial optimization parameter that de-

pends on the type of movement. For example, when an athlete is performing physical 

exercise during lengthy series, long analysis windows could be directly used to obtain 

high recognition performance. However, if a person is performing unknown activities, a 

lower decision resolution is required to detect the type of movement beforehand. In this 
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regard, a trade-off between decision resolution and performance is critical for leveraging 

the capabilities of HAR systems. 
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