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Abstract: Metal-oxide (MOX) sensors offer a low-cost solution to detect volatile organic compound
(VOC) mixtures. However, their operation involves time-consuming heating cycles, leading to a
slower data collection and data classification process. This work introduces a few-shot learning
approach that promotes rapid classification. In this approach, a model trained on several base classes
is fine-tuned to recognize a novel class using a small number (n = 5, 25, 50, and 75) of randomly
selected novel class measurements/shots. The used dataset comprises MOX sensor measurements
of four different juices (apple, orange, currant and multivitamin) and air, collected over 10-minute
phases using a pulse heater signal. While a high average accuracy of 82.46 is obtained for 5-class
classification using 75 shots, the model’s performance depends on the juice type. One-shot validation
showed that not all measurements within a phase are representative, forcing careful shot selection to
achieve a high classification accuracy. Error analysis revealed contamination of some measurements
by the previously measured juice, a characteristic of MOX sensor data that is often overlooked and
equivalent to mislabelling. Three strategies are adopted to overcome this: (E1) and (E2) fine-tune after
dropping initial/final measurements and the first half of each phase, respectively, (E3) pretrained
with data from the second half of each phase. Results show that each of the strategies performs best
for a specific number of shots. E3 results in the highest performance for 5-shot learning (accuracy
63.69), whereas E2 yields best results for 25-/50-shot learning (accuracies 79/87.1) and E1 predicts
best for 75-shot learning (accuracy 88.6). Error analysis also showed that for all strategies more than
50% of air misclassifications resulted from contamination, but E1 was affected the least. This work
demonstrates how strongly data quality can affect prediction performance especially for few-shot
classification methods and that a data-centric approach can improve results.

Keywords: metal-oxide sensors; few-shot classification; data quality analysis

1. Introduction

Gas detection and classification as well as the analysis of the composition of gas
mixtures can be performed with analytical tools such as gas chromatography, mass spec-
trometry or Fourier transform infrared spectroscopy. Unfortunately, these tools are ex-
pensive and difficult to operate. Metal-oxide (MOX) sensors or arrays of MOX sensors
are a promising alternative as they are small and financially competitive [1]. However,
these sensors lack selectivity to target volatile organic compounds (VOCs) and are prone
to cross-contamination. Selectivity and stability can be improved with metal oxides such
as SnO2, WO3, TiO2, CuO, In2O3, ZnO, Fe2O3 as well as the addition of noble metals like
Pd or Pt. Moreover, the definition of a heater temperature modulation, that influences
the gas-specific reaction with the sensor surface, allows for a more stable classification
of results [2]. However, using temperature modulation, MOX sensors consume several
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seconds for a single data sample, resulting in a prolonged data collection process. This
becomes a hindrance during real-time inferencing as well. For instance, a classification
algorithm that learns to detect a particular class requires to be trained in a supervised
manner on several data samples and may cost us minutes to hours until it learns a new
class. Hence, a rapid classification strategy becomes necessary to cope with the inherent
delay associated with MOX sensors. In this work, a method to rapidly classify MOX sensor
data is presented and strategies to improve the classification performance by having a
deeper look into the characteristics of the data are explored.

2. Applications of MOX Sensors in Food Industry

Ideally, data collected using MOX sensors serve as a “fingerprint” of the volatile
components emitted by the measured substance. Thus, the data together with an appropri-
ate algorithm can serve to detect any deviation of the norm, which in the food industry
has been applied to control the quality and authenticity of products. A good review of
these studies is provided by [3,4]. In the context of food authenticity, MOX sensors paired
with pattern recognition algorithms have been used for many applications, such as the
identification of adulterated milk, cow ghee [5], olive oil, saffron and cherry tomato juice.
Moreover, for various products, such as olive oil, orange juice, meat, milk or honey, the
authenticity of the geographical origin could be determined. Moreover, the technique also
served to determine faults in production processes. The “electronic nose” was also able
to detect food spoilage, i.e., microbial contamination in soft drinks [6], juices [7,8] and
meat products and assess the freshness of produce in meat, eggs or fish. In addition, MOX
sensors served to assess the age or ripeness of products, for which this is a quality-defining
parameter, such as fruit or wines. The systems applied in most of these studies consist of
an array of MOX sensors combined with a simple pattern recognition algorithm based on
principal component analysis, linear discriminant analysis, Partial Least Squares regres-
sion or cluster analysis. Only a few studies have applied more sophisticated modelling
approaches such as neural networks. Moreover, data collection is usually performed in
a laboratory-controlled environment, yielding very clean data and not dealing with the
MOX sensor’s sensitivity towards temperature, humidity or air composition. This paper
presents a fast few-shot learning approach with a convolutional neural network (CNN)
trained on the data collected in a regular office environment.

3. Data Collection

The data used for this paper was collected using four AS-MLV-P2 sensors with a
sensitive layer of SnO2 : Pd. As a reference, four more sensors of the same type were placed
inside the room to measure the surrounding air composition. All sensors were operated
with a temperature modulation of 1 s on 450 ◦C, 5 s on 200 ◦C, 1 s on 450 ◦C and 5 s on
300 ◦C. For each measurement, 6 cl of four different types of juices (apple, currant, orange,
and multivitamin) were poured into a 6 cm high glass that was subsequently covered
with a plexiglass cover into which the MOX sticks have been drilled. Apart from the juice
headspace, pure air was measured by exposing the sensor to the ambient air. Each sample
was continuously measured for 10 min (phase) during which the pre-defined temperature
cycle was repeated. The data collection protocol was designed in a way that each sample
was measured subsequently to each other sample, with 5 types of juice and air. This led to
a collection protocol of 20 phases. These measurements were carried out in a time frame of
8 months.

4. Method

Few-shot classification (FSC) is a way to enable rapid classification, i.e., the classifier
learns to identify a new class when trained with a few inputs or shots. In this work, we
use FSC to enhance the capabilities of a baseline model to detect a novel class that is not
significantly different from the base classes. Using the transfer-learning-based approach,
the classifier is initially trained on the base classes (meta-training stage) and a part of the
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model is fine-tuned on the novel class data (fine-tuning/meta-testing). The training dataset
in the fine-tuning stage is called the Support dataset, whereas the test dataset is known as
the Query set [9]. The meta-training stage involves the standard training procedure. In the
fine-tuning phase, a small part of the network is retrained as the support dataset consists
of samples in the order of 10.

In this work, four few-shot classification experiments are conducted where each
experiment considered one of the 5 juices as novel. Thus, the data for meta-training Xb
consists of three juice classes and air as the base classes and the data for fine-tuning Xn
contains the novel juice class in addition. Each dataset is further split into balanced training
and test datasets. The few-shot classification model comprises a convolutional neural
network and is divided into two parts. In the meta-training stage, the feature extractor
fθ , a convolutional neural network parametrized by the network parameters θ, and the
classifier C(·|Wb) parametrized by the weight matrix Wb are trained by minimizing the
binary cross-entropy classification loss on the train set of Xb. The trained model is validated
on the held-out part of Xb. The feature extractor consists of a Gaussian noise layer and
two convolutional layers, all using the ReLu activation function as well as a dense layer.
The classifier C(·|Wb) consists of a fully connected layer with five output nodes in both
meta-training and fine-tuning stages. During meta-training, the excess output node is
forced to output zero. In the fine-tuning stage, the parameters θ of the feature extractor
fθ are frozen and the classifier is fine-tuned to obtain the weights Wn. The support set
of Xn with novel juice class is used to fine-tune the classifier using binary cross-entropy
loss minimization.

In each experiment’s fine-tuning stage, four different ways to fine-tune the classifier,
namely 1-shot, 5-shot, 50-shot and 75-shot, varying in the number of shots, are tested.
A special case of zero-shot is tested where there is no fine-tuning, yet the query set is
classified by the model trained on base classes. An increase in classification performance
from that of the zero-shot regime is likely to depict the information gain from novel classes.
Since iteratively trained algorithms undergo catastrophic forgetting post-fine-tuning, the
validation dataset from the meta-training stage is used to test the extent of forgetting-
Catastrophic forgetting test (CFT). The lower the change in performance before and after
fine-tuning, the more robust is the model.

5. Baseline Few-Shot Classification Results

During the meta-training stage, the feature extractor and classifier are optimized using
Adam optimizer, trained for 200 epochs with a batch size of 20 with an initial learning
rate of 0.001, which was increased to 0.01 during fine-tuning. Results are presented in
Table 1. The average validation accuracy of the model over all the experiments during
meta-training is 82.83%. Upon fine-tuning this pretrained model using 5-shot regime, the
average accuracy obtained on the query set is 44.46%, whereas, using 75-shot is 82.47%.
Difference in 5-shot and 75-shot performances reveals that a pretrained model is having
difficulties learning and generalizing to new classes from a small amount of data. The
pretrained model does not undergo catastrophic forgetting as the CFT validation accuracy
is close to meta-training validation accuracy. Plausible reasons are the shallow network
architecture and the low number of fine-tuning iterations.

Table 1. Average validation, test and catastrophic forgetting test accuracies.

Validation #shots Test CFT

0.82825 0-shot 0.4618 -
5-shot 0.4446 0.8143

25-shot 0.6934 0.8118
50-shot 0.7742 0.8109
75-shot 0.8247 0.7907
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5.1. Sample Screening

The performance of the k-shot learned model relies on the selected k input samples,
that should be representative of their class. To verify this, sample screening was carried out:
Each sample in the novel juice class was used to fine-tune a pretrained model using 1-shot
regime. The fine-tuned model is validated on a balanced dataset comprising of rest of the
novel juice class and air samples. This 1-shot validation is conducted in the same order of
data collection. Figure 1 depicts the variation in the validation accuracy over samples from
consequent 10-minute phases. The validation accuracy is significantly lower for samples at
the start of the phases indicating contamination from the previous phase. This is likely due
to the residual effect of the previously measured class on the sensors.

Figure 1. Test accuracies obtained when the classifier is finetuned on every sample of Orange juice.
Samples from the beginning of the phase often resulted in reduced performance.

5.2. Error Analysis

The misclassifications in each experiment are studied based on the number of shots
used to fine-tune. Moreover, the percentage of influence of the juice measured in the
previous phase on the misclassifications is also calculated. A misclassification qualified
for an influence when the predicted juice class coincided with the juice phase prior to the
current sample’s phase. The metrics are split into air and the juice class in Xn. For all
k-shot experiments (except the 25-shot test for multivitamin), more than 50% of air misclas-
sifications are related to the previous juice class (refer Table 2). As the shots increase, the
misclassifications for juice decrease and the fine-tuned model becomes robust to previous
juice phases’s influence as well. This analysis indicates that the contamination effect is
reflected in the modelling results.

Table 2. Misclassification (M) out of 3220 per class and previous phases’ influences (I) on them.

Class #M #I % M % I

5-shot Air 357 243 11.09 68.07
Juice 3220 460 100.0 14.29

25-shot Air 474 336 14.72 70.89
Juice 1501 233 46.61 15.52

50-shot Air 443 267 13.76 60.27
Juice 1011 86 31.40 8.51

75-shot Air 340 269 10.56 79.12
Juice 789 22 24.50 2.79



Eng. Proc. 2021, 1, 0 5 of 7

6. Data Analysis: Class Separability and Contamination

Section 5 indicated that the first measurements of each phase are not representative
of the measured class. To investigate the data quality and separability of the five differ-
ent classes (air as well as orange, apple, multivitamin, and currant juice) the data was
transformed using t- Distributed Stochastic Neighbor Embedding (t-SNE), a technique
for dimensionality reduction that is particularly well suited for the visualization of high-
dimensional datasets [10]. Figure 2 shows the data projected into the 2-dimensional t-SNE
plane using a perplexity of 30. It can be seen that all juices form (sometimes overlap-
ping) clusters that each are divided into sub clusters, indicating the different phases of
measurement (data not shown). Each of the sub clusters is of an oblong form, ending
in air measurements. Air overall forms a widespread cluster containing measurements
labeled as juice spread throughout it. These patterns can be explained by contamination:
After measuring a juice, the air surrounding the glass as well as the sensor still contains
volatile components emitted by the juice distorting the air measurement. Thus, whenever
the measurement of an air phase starts, the data point is still projected into the area of
the 2D plot of the corresponding juice (the “tips” of the elongated clusters ). As the juice
aromas disappear the voltage signal changes to that of pure air and the corresponding
data points are projected into the air cluster. The same phenomenon can be observed
when juice is measured after air: the first samples, where the juice VOCs are still strongly
diluted by air, are projected into the air cluster. Once the juice aroma concentration is high
enough, the data gets projected into the space corresponding to the juice. Moreover, as the
concentration of the VOCs increases the samples stretch along the elongated sub cluster.
This is illustrated in Figure 2 on the right, which shows a color-coded plot of orange juice
measurements: the first sample taken is dark blue, the last one bright yellow.

These contamination patterns can also be observed directly in the voltage data.
Figure 3 shows all measurements taken during a phase of orange juice following a phase
of air measurements (left), the other way around (middle) and reference measurements
taken outside of the measuring glass (right), the colorbar indicating the sample number.

Figure 2. All (left) and just orange juice (right) measurements projected into t-SNE plane.

Figure 3. Measurements collected during a phase of orange juice measurements following a phase of
air measurement (left) air measurements following a phase of orange juice measurement (middle)
and reference measurements of the room air collected at the same time (right).

7. Data-Centric Improvement Strategies and Their Results

Sample screening and error analysis indicated contamination in the data and therefore
data-centric strategies to improve results were employed. Considering the previously used
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few-shot classification strategy as the first (E0), three other strategies, involving careful
selection of samples for fine-tuning or pretraining are tested:

E1: Dropping initial and final measurements: The first and last 10 samples of each phase
are excluded as they result in reduced one-shot validation accuracy (Section 5.1) and
could be prone to phase transition errors, respectively. From the remaining samples
the shots for fine-tuning were randomly selected, resulting in a significantly improved
accuracy (Figure 1).

E2: Dropping first half phase: The samples from the first half of each phase (samples 0–19)
are removed as in majority of the phases, the measurement cycles stabilzed after the
twentieth measurement (Figure 1). The shots for fine-tuning are randomly chosen
from the remaining data. Contrary to what was expected, the resulting test accuracies
for different number of shots either decreased or remained the same, except for 50-shot
test where it increased by 2%.

E3: Dropping first half phase and retraining: The model is retrained with the base classes after
removing each first half phase, assuming the possible contamination affects the model.
Shots for fine-tuning are selected from second half of each phase. With the exception
of 5-shots, all tests resulted in reduced accuracy. This is likely due to overfitting in the
model and hence, loss of generalizability.

Table 3 shows, that strategy E1 improved all k-shot tests performance, whereas the
rest improved for specific shots. Misclassification analysis showed that E1 yields the
least air misclassification and E3 the least juice misclassification. E1 also demostrates
lesser influence of the previously measured juice on the classification. Retaining a few
underperforming samples allows the model to be robust to contamination.

Table 3. Test accuracies averaged over shots for four strategies.

E0 E1 E2 E3

5-shot 0.4445 0.4699 0.4710 0.6369
25-shot 0.6933 0.7878 0.7907 0.7725
50-shot 0.7742 0.8528 0.8705 0.7962
75-shot 0.8246 0.8860 0.8601 0.8424

8. Conclusions

This work demonstrates the impact of data quality on prediction performance, es-
pecially for few-shot classification methods and that a data-centric approach can improve re-
sults. Three strategies are adopted to overcome the hindrance due to non-representativeness
of the samples. Results showed overall classification improvement in strategy E1. Moreover,
each of the strategies performs best for a specific number of shots. Error analysis revealed
that for all strategies more than 50% of air misclassifications resulted from contamination,
but E1 was affected the least.
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