Design, Synthesis and Biological Evaluation of Novel Tetrahydro-β-Carbolines With Potent Anti-Plasmodial Activity

Esraa El-Halawaty¹, Howida AlSeedy¹, Tarryn Swart², Heinrich Hoppe², Ashraf Abadi¹, Nermin S.

Ahmed¹

¹Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt.

² Dept. of Biochemistry & Microbiology. Rhodes University, Makhanda, South Africa.

Abstract

Malaria is one of the most challenging diseases. Over three billion people are threatened by the parasite worldwide and one million are killed each year, mostly children. *Plasmodium falciparum* accounts for the most severe and fatal form of the disease. Adopting repurposing strategies for drug development, a

Results and Discussion

series of novel tadalafil (an approved PDE5 inhibitor) analogs was rationally designed, synthesized, and evaluated as antimalarial agents. The novel analogs were designed to retain the tetrahydro- β -carboline nucleus of tadalafil, the pendant aryl benzodioxol was substituted by *p*-bromophenyl, *p*-chlorophenyl, 2,6 dichlorophenyl or 2,4 dimethoxyphenyl rings. Moreover, the *N*-methyl substituent of the piperazinedione ring was replaced by substituents namely: benzyl, 2,6 dichlorobenzyl, 2,6 difluorobenzyl or cyclohexylmethyl ring. Besides, we manipulated all stereochemical aspects *via* the preparation of all possible diastereomers. The newly synthesized compounds were evaluated *in vitro* for their anti-plasmodial activity against *P. falciparum* using the Plasmodium lactate dehydrogenase (pLDH) assay and for their cytotoxicity against HeLa cells. Compound 3, the most active compound, showed IC₅₀ of 0.08 μ M versus pLDH, CC₅₀ > 20 μ M and SI₅₀ > 250, indicating a safe profile of most of the novel molecules. Whether the anti-plasmodial activity is facilitated *via* plasmodial PDE activity is still being investigated.

Table 1: Antiplasmodial activity, cytotoxicity and selectivity of compounds 1-7

Cpd#	R	R ₁	pLDH Assay	H HELA cell Assay ay (20 μM)		Selectivity Index	Stereo -chemistry
			IC ₅₀ ± SD (μM)	% viability ± SD (μM)	IC ₅₀ ± SD		
1		-2,6- dichloro phenyl	0.88± 0.06	97.2 ±4.3	>20	>24.39	R,R
2	2, 4 -OCH ₃	-2,6- difluoro- phenyl	0.48± 0.10	87.3 ±1.9	>20	>52.63	R,R
3		-Phenyl	0.08± 0.01	91.8 ±0.2	>20	>285.71	R,R
4	4-Cl	-2,6- dichloro- phenyl	0.66± 0.04	95.4 ±1.9	>20	>32.26	R,R
5		-Cyclo hexyl	0.53± 0.05	-0.7 ±0.0	4.8± 0.03	10.06	R,R
6		-Phenyl	0.78± 0.005	94.6 ±2.9	>20	>25.81	<i>S,S</i>
7	4-Br	-2,6- difluoro phenyl	0.63± 0.04	83.4 ±0.7	>20	>33.90	R,R

Introduction

Malaria is one of the significantly fatal diseases over the decades; that has huge economic loss globally. β - carboline-containg scaffolds that are present in many pharmacologically active drugs were found to have positive results against *p*. *falciparum*. For example, a β -carboline alkaloid called manzamine A confirmed potent activity as an anti-plasmodial both *in vivo* and *in vitro* among the natural compounds.⁽¹⁾ Drug repurposing of already safe marketed drugs used for the treatment of other diseases is a useful tool for discovery of new drug candidates. Tadalafil analogues-a previously reported PDE5 inhibitor used for the treatment of Male Erectile Dysfunction (MED) was reported as potent Anti-Malarial agents. ⁽²⁾ Accordingly, we designed and synthesized our compounds bearing the main THBC scaffold of tadalafil , the effect of structural modifications on both the anti-plasmodial activity and cytotoxicity of the compounds were evaluated.

Conclusion

- Drug repurposing leads to development of novel safe drugs , it is a time saving method for screening for new treatments.
- The novel series of tadalafil analogues showed sub micromolar activity against Plasmodium falciparum.
- All the possible stereochamical isomers were prepared. Most of the active analogues were in a *cis* configuration (*R*,*R*), this stereochemical requirement is also essential for PDE5 activity.
- > Compounds activity was not mediated *via* plasmodial PDE5 (*data not shown*).

References

1-Gorki, V., Singh, R., Walter, N. S., Bagai, U., & Salunke, D. B. (2018). Synthesis and Evaluation

of antiplasmodial efficacy of β -carboline derivatives against murine malaria. ACS omega, 3(10), 13200-13210.

2-Beghyn TB, Charton J, Leroux F, Laconde G, Bourin A, Cos P, Maes L, Deprez B. (2011) Drug

to genome to drug: discovery of new antiplasmodial compounds. J Med Chem 54(9),3222-

3240.

 \succ Most of the compounds showed cytotoxicity >20 μ M , compounds with high

selectivity reflect their high safety profile.

> Compound 3 was the most active with IC₅₀ 0.08 μ M and with selectivity Index more than 285.71.