Comprehensive *in vitro* and *in vivo* phenotypic-based screening for the identification of new aza-scorpionid macrocycles agents against *T. cruzi*

Rubén Martín-Escolano 1,*, Javier Martín-Escolano 2,3, Encarnación Medina-Carmona 4, Maria Paz Clares 5, Nuria Cirauqui 6, Maria José Rosales 7, Enrique García-España 5, and Clotilde Marin 7

1 Laboratory of Molecular & Evolutionary Parasitology, RAPID group, School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK.

2 Servicio de Microbiologia Clinica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain.

3 Instituto de Investigación, Sanitaria Gregorio Marañón (IISGM), 28009 Madrid, Spain.

4 Department of Physical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071, Granada, Spain.

5 ICMol, Departamento de Química Inorgánica, Universidad de Valencia, C/Catedrático José Beltrán 2, 46980, Paterna, Spain.

6 Molecular Microbiology and Structural Biochemistry, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, 69367, Lyon Cedex 07, France.

7 Department of Parasitology, Instituto de Investigación Biosanitaria (ibs. Granada), Hospitales Universitarios De Granada/University of Granada, Severo Ochoa s/n, 18071 Granada, Spain.

* Corresponding author: r.martin-escolano@kent.ac.uk
Comprehensive *in vitro* and *in vivo* phenotypic-based screening for the identification of new *aza-scorpiand* macrocycles agents against *T. cruzi*
Abstract:

Trypanosoma cruzi, the aetiological agent of Chagas disease, is a genuine parasite with a tremendous genetic diversity and a complex life cycle, causing complicated pathogenesis. The treatment of the disease has been studied by scientists for more than 100 years, but at present Chagas disease is a life-threatening infection and a global public health problem that has no effective treatment and affects 6-8 million people worldwide. Hence, there is an urgent need for effective new drugs to tackle Chagas disease. Here, we describe a comprehensive strategy and a complete *in vitro* and *in vivo* phenotypic-based screening in early drug discovery pipeline for the identification of new effective agents against *T. cruzi*. In short, 22 *aza-scorpiand* macrocycles were screened in vitro against different *T. cruzi* strains (including a BZN-resistant strain), and lead compounds were evaluated in vivo after oral administration in both the acute and chronic infections in mouse model. The mode of action was also evaluated at the energetic level.

Keywords: Chagas disease; Drug discovery; Neglected tropical diseases; Screening cascade; *Trypanosoma cruzi*
Introduction
Chagas Disease & *Trypanosoma cruzi*

- Parasitic, systemic, chronic and life-threatening illness.
- Caused by tropical infection with the triatomine-transmitted protozoan parasite *Trypanosoma cruzi*.

Classified as:
- A neglected tropical illness.
- The most important parasitic disease in Latin America.
- The leading cause of morbimortality in many endemic regions.
- The most prevalent of the poverty-caused and poverty-promoting illness in Latin America.
- Fewer than 10% people are diagnosed and only a few number receive treatment.
Introduction
Chagas Disease & *Trypanosoma cruzi*

- The prevalence of the disease has been reduced in Latin America due to:
 - **Health policies**: compulsory blood-bank screening.
 - **Multinational initiatives**.

- Widespread due to mobility and migration.

- **Global health problem**:
 - 6-8 million infected people.
 - 28 thousand new cases/year.
 - 14-50 thousand deaths/year.
 - 70-100 million people at risk of infection.

Lidani KCF et al., 2019
Introduction
Genetic diversity of *T. cruzi*

- **Pool of strains and isolates** that circulate among vectors and mammalian hosts.
- Extensively studied by biological, biochemical, and molecular methods.
- Difference up to 40% in DNA content between strains.
- 2009 → 6 genetic lineages or DTUs has been proposed.

Classical clonal evolution model is challenged:
- Binary fission.
- Discrete mutations.

Recombination and genetic exchange between the dividing amastigote intracellular forms.
- Expected **genetic exchange** in the digestive tract of triatomine vectors.

Francisco AF et al., 2017

Messenger LA and Miles MA, 2015
Introduction
Genetic diversity of *T. cruzi*

- This heterogeneity could explain the **geographical differences** in:
 - Disease pathology.
 - Morbidity and mortality.
 - The wide divergence in the susceptibility of the current treatments.

- **No definitive correlation** between them and parasite lineage has been established.
- Tcl isolates, more resistant to the reference drug benznidazole
- There are divergences in susceptibility to current treatments independently of the mitochondrial nitroreductase (TcNTR) sequence.

However

Additional factors should be studied

To avoid:
- Drug resistance
- Treatment failures

Hence
Introduction

Life-cycle of *T. cruzi*

- Replicative amastigotes (intracellular)
- Non-replicative bloodstream trypomastigotes
- Replicative epimastigotes
- Non-replicative metacyclic trypomastigotes
- Numerous vector species
- Numerous mammal host species

Heteroxenic protozoan

Pool of different *T. cruzi* strains

Bern C., 2015

The 7th International Electronic Conference on Medicinal Chemistry
01–30 November 2021 | ONLINE
Introduction
Life-cycle of T. cruzi

- The process in mammalian host cells is more complex.

 Intermediate forms are also observed during the T. cruzi life-cycle.

And even an extracellular differentiation to amastigote forms
Introduction
Current treatments

- Limited to two obsolete nitroheterocyclic drugs:
 - Frequently treatment failures.
 - Long treatment periods.
 - Toxic side-effects.

 ![Benznidazole](image)
 ![Nifurtimox](image)

- The cure rate depends on several factors:
 - Phase of the disease.
 - Age and immune response of the patient.
 - Susceptibility of the parasite genotype.
 - Associated comorbidities.

- Treatment recommendations:
 - Contraindicated during:
 - Pregnancy.
 - Kidney or liver insufficiency.
 - People with advanced Chagas heart disease.

The 7th International Electronic Conference on Medicinal Chemistry
01–30 NOVEMBER 2021 | ONLINE
Introduction

Aims

- **Chagas Clinical Research Platform (CCRP) (2009):**
 - Evaluation and development of **new drugs** for Chagas disease.
 - **Standardization of methodology** to assess drug efficacy.
 - Revision of **alternatives** for using current approved drugs (guidelines, doses, combination).

- The aim is to find a specific treatment that allows the **eradication** of the **parasite** and, hence, the elimination of the symptoms of Chagas disease.

- The development of **new drugs, safer, more effective, that provide a shorter treatment course**, preferably oral, is an important need.
Introduction
Objectives

1. Establish a **comprehensive and complete phenotypic-based screening** in both *in vitro* and *in vivo* models to identify potential compounds against Chagas disease.

2. Develop more effective, safer and affordable compounds since the current therapeutic arsenal to combat Chagas Disease is inadequate and insufficient.

Introduction
Current target product profile / Objectives

<table>
<thead>
<tr>
<th>Acceptable</th>
<th>Ideal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target population</td>
<td>Chronic</td>
</tr>
<tr>
<td>Geographic Distribution</td>
<td>All regions</td>
</tr>
<tr>
<td>Efficacy</td>
<td>Non inferior to benznidazole standard dose* in all regions (parasitological)</td>
</tr>
<tr>
<td>Safety</td>
<td>Superiority to benznidazole* in the frequency of definitive treatment discontinuations for medical indication (clinical and laboratory)**</td>
</tr>
<tr>
<td>Contraindications</td>
<td>Pregnancy</td>
</tr>
<tr>
<td>Precautions</td>
<td>No genotoxicity**, No pro-arrhythmic potential</td>
</tr>
<tr>
<td>Interactions</td>
<td>No clinically significant interaction with anti-arrhythmic and anticoagulants drugs</td>
</tr>
<tr>
<td>Presentation</td>
<td>Oral/Parenteral (short POC)**</td>
</tr>
<tr>
<td>Stability</td>
<td>3 years, climatic zone IV</td>
</tr>
<tr>
<td>Dosing regimen</td>
<td>Oral – any duration</td>
</tr>
<tr>
<td>Cost</td>
<td>Current treatments</td>
</tr>
</tbody>
</table>

Objectives of this work

* As per WHO recommendation
** No genotoxicity is a condition only for NCEs
*** Need for parenteral treatment for severe disease
Introduction
Screening strategy

Compounds
First screening

In vitro activity against epimastigotes

- $IC_{50} < 20 \, \mu M$
- $SI > 10$

Phenotypic-based screening

Hit compounds

Second screening

In vitro activity against amastigotes and trypomastigotes

- Trypanocidal activity $> BZN$
 (preferably $IC_{50} < 10 \, \mu M$)
- $SI > 10$ (preferably > 100)
- Max. Activity > 90
- Potency against different *T. cruzi* strains
 (including BZN-resistant strains)
- Fast-acting and cidal MoA

Lead compounds

Third screening

In vivo activity

- Parasite burden reduction $\geq BZN$
 (preferably $> 80\%$ or parasitological cure)
- Efficacy in both acute and chronic CD
- Oral efficacy

Candidate compounds

IC$_{50}$, inhibitory concentration 50
SI, selectivity index.
Results and discussion

In vitro activity assays

Activity of benznidazole and compounds against the three developmental forms of *Trypanosoma cruzi*, and toxicity on mammalian Vero cells.

<table>
<thead>
<tr>
<th>Compound</th>
<th>T. cruzi Arequipa strain</th>
<th>T. cruzi SN3 strain</th>
<th>T. cruzi Tulahuen strain</th>
<th>Toxicity VERO cells</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E</td>
<td>A</td>
<td>T</td>
<td>E</td>
</tr>
<tr>
<td>BZN</td>
<td>16.9 ± 1.8</td>
<td>8.3 ± 0.7</td>
<td>12.4 ± 1.1</td>
<td>36.2 ± 2.4</td>
</tr>
<tr>
<td>2</td>
<td>2.9 ± 0.3</td>
<td>6.2 ± 0.6</td>
<td>4.8 ± 0.5</td>
<td>5.7 ± 0.5</td>
</tr>
<tr>
<td>9</td>
<td>18.1 ± 3.9</td>
<td>nd</td>
<td>nd</td>
<td>36.4 ± 3.4</td>
</tr>
<tr>
<td>16</td>
<td>9.0 ± 1.0</td>
<td>14.6 ± 1.5</td>
<td>10.3 ± 0.9</td>
<td>15.7 ± 1.2</td>
</tr>
<tr>
<td>19</td>
<td>18.4 ± 1.5</td>
<td>25.9 ± 2.8</td>
<td>27.4 ± 2.4</td>
<td>19.6 ± 2.2</td>
</tr>
<tr>
<td>21</td>
<td>6.4 ± 0.6</td>
<td>2.5 ± 0.3</td>
<td>1.6 ± 0.1</td>
<td>16.9 ± 1.4</td>
</tr>
</tbody>
</table>

E, epimastigotes; A, amastigotes; T, trypomastigotes

1-22, new synthesized *aza-scorpian* macrocycles

The compounds with the best activity profile are listed in this table.

The value is the mean of three separate determinations ± standard deviation. BZN, benznidazole; nd, not determined.
Results and discussion

In vitro activity assays

A) Number of amastigotes of *Trypanosoma cruzi* Arequipa strain per Vero cell exposed to benznidazole (BZN) and 21. The value is the mean of three separate determinations ± standard deviation. * Significant differences between control and treated parasites for $\alpha = 0.05$. B) Representative images of Vero cells infected, treated and Giemsa stained. Arrows point to the amastigotes.
Results and discussion

In vivo activity assays

Parasitaemia profiles

A) Parasitaemia profile during the acute infection. Treatment days are represented in grey. The value is the mean of three mice ± standard deviation. Significant differences between control and treated mice for $\alpha = 0.05$.

- Treatment period
- Parasitaemia peak
- Last day of parasitaemia
Results and discussion

In vivo activity assays

2/3 Parasitaemia reactivation after immunosuppression

Double test-of-cure

3/3 Infected target organs/tissues

B) Parasitaemia reactivation after immunosuppression of mice treated during the acute and chronic infection. The value is the mean of three mice ± standard deviation. Significant differences between control and treated mice for α = 0.05. C) PCR analysis of the nine target organs/tissues after treatment of mice during the acute and chronic infection. Lanes: M, base pair marker; -, PCR negative control; +, PCR positive control; 1-9, organs/tissues PCR: 1, adipose; 2, bone marrow; 3, brain; 4, oesophagus; 5, heart; 6, lung; 7, muscle; 8, spleen; 9, stomach. * 1/3 of the mice showed 300 bp PCR product on electrophoresis; ■ 2/3 of the mice showed 300 bp PCR product on electrophoresis. BZN, benznidazole.
Results and discussion

Compound 21 fulfills the *in vitro* requirements established for ideal drugs against Chagas disease:

- Higher trypanocidal activity and lower toxicity than BZN.
- Efficacy against a panel of different *T. cruzi* strains.
- Fast time to kill and cidal behaviour.

Compound 21 met many of the *in vivo* criteria established for ideal drugs against CD:

- Activity after oral administration.
- Activity in both the acute and chronic phases of Chagas disease.
- Higher efficacy than the reference drug benznidazole.

Toxic effects were also analysed by measuring heart, kidney and liver markers. The low toxicity exhibited by compound 21 allows it to be tested at higher doses (partial or total) in order to reach a sterile cure.
Results and discussion

MoA assays

Energetic metabolism tests

Metabolite excretion (catabolic alterations)

A) Variation of catabolites excreted by epimastigotes of *Trypanosoma cruzi* exposed to 21 at IC$_{25}$ concentrations in comparison to control parasites. The value is the mean of three separate determinations ± standard deviation. * Significant differences between control and treated parasites for $\alpha = 0.05$. B) Mitochondrial membrane potential from epimastigotes of *Trypanosoma cruzi* Arequipa strain exposed at IC$_{25}$ concentrations: (a) blank, (b) control, (c) potassium cyanide (KCN), (d) BZN, (e) 21, (f) Inhibition on mitochondrial membrane potential with respect to control parasites. The value is the mean of three separate determinations ± standard deviation. Significant differences between control and treated parasites for $\alpha = 0.05$.

Mitochondrial membrane potential (mitochondrial dysfunction)

![Graph showing inhibition percentages]

<table>
<thead>
<tr>
<th>Inhibitor</th>
<th>Inhibition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KCN</td>
<td>95.5 ± 6.1</td>
</tr>
<tr>
<td>BZN</td>
<td>35.4 ± 3.2</td>
</tr>
<tr>
<td>21</td>
<td>43.1 ± 3.6</td>
</tr>
</tbody>
</table>
Results and discussion

MoA assays

SOD enzyme inhibition tests

C) Inhibition of Trypanosoma cruzi Fe-SOD – activity 42.0 ± 3.8 U·mg⁻¹ – and human erythrocytes CuZn-SOD – activity 47.3 ± 4.1 U·mg⁻¹ – for 21. The value is the mean of three separate determinations ± standard deviation. In brackets: IC50 value. D) Proposed binding mode of compound 21 to the cytosolic Fe-SOD enzyme (PDB ID 2GPC) (PubMed: 19384994).

All this lead us to hypothesize that the cidal activity of compound 21 can be attributed to a mitochondria-dependent bioenergetic collapse and redox stress by Fe-SOD inhibition.

The possibility of multitarget activity should however not be rejected.
Conclusions

1. A comprehensive and complete phenotypic-based strategy has been developed in both *in vitro* and *in vivo* models to identify potential compounds against Chagas disease.

2. Compound 21 has been identified as a potential compound that meets the most stringent *in vitro* and *in vivo* requirements, whose trypanocidal activity was even higher than that of the reference drug benznidazole.

3. Its fast-acting and cidal activity profile could be ascribed to a mitochondria-dependent bioenergetic collapse and redox stress by inhibition of the Fe-SOD enzyme.

4. Given that the ultimate goal is to achieve a sterile parasitological cure, new treatment schedules or even a synergistic compound 21-BZN treatment should be exploited. This combination is likely to improve trypanocidal activity, increase the efficacy, and reduce toxicity.
Acknowledgments

Dr Rubén Martín-Escolano

Dr Nuria Cirauqui

Dr Maria Paz Clares
Prof Dr Enrique García-España

Mr Javier Martín-Escolano
Dr Encarnación Medina-Carmona
Prof Dr María José Rosales
Dr Clotilde Marín

FUNDINGS
• CONSOLIDER CSD2010–00065
• CTQ2017–90852-REDC

The 7th International Electronic Conference on Medicinal Chemistry
01–30 November 2021 | ONLINE