

The 7th International Electronic Conference on Medicinal Chemistry (ECMC 2021) 01–30 NOVEMBER 2021 | ONLINE

Chemical constituents and antifungal activity of *Coccoloba cowellii* leaves

Daniel Méndez ^{1,*}, Julio C. Escalona ², Ann Cuypers ³, Luc Pieters ⁴, and Paul Cos ⁵

¹ Chemistry Department, Faculty of Applied Sciences, University of Camagüey, Carretera de Circunvalación Km 5 ½, Camagüey 74650, Cuba;

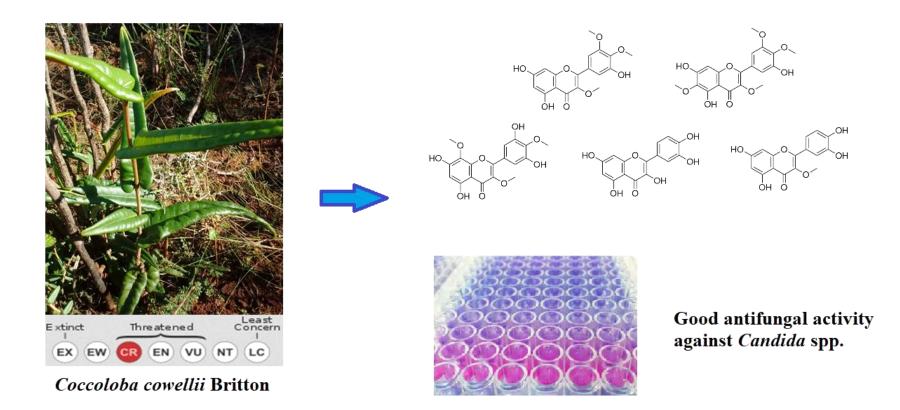
² Pharmacy Department, Faculty of Natural and Exact Sciences, Oriente University, Avenida Patricio Lumumba s/n, Santiago de Cuba 90500, Cuba;

³ Centre for Environmental Sciences, Campus Diepenbeek, Hasselt University, Agoralaan Building D, BE-3590, Diepenbeek, Belgium;

⁴ Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium;

⁵ Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium.

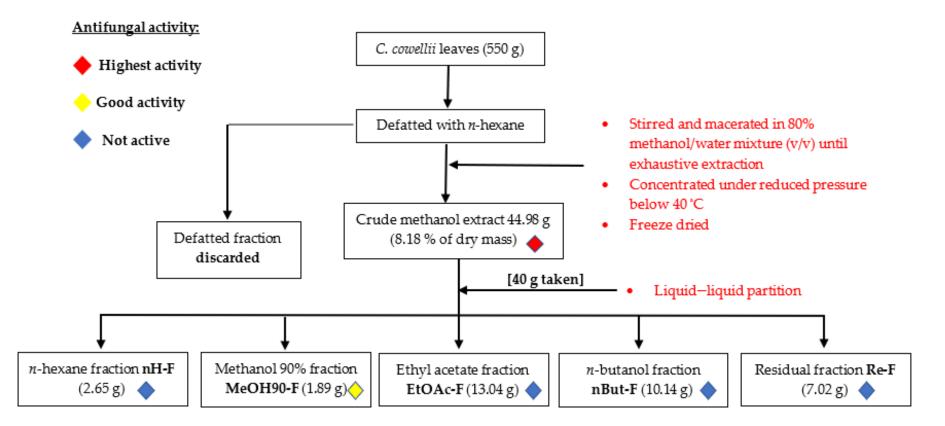
* Corresponding author: daniel.mendez92r@gmail.com



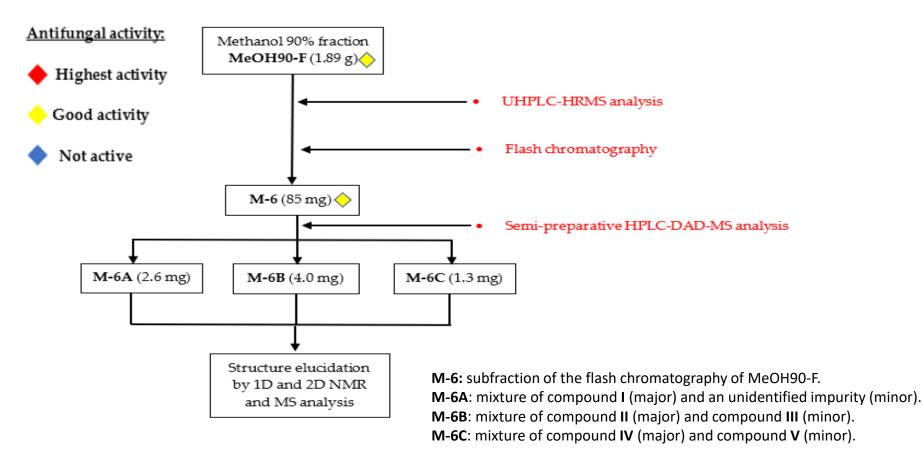
Chemical constituents and antifungal activity of *Coccoloba cowellii* leaves

Abstract: The genus *Coccoloba* (Polygonaceae, order Caryophylalles) comprises approximately 150 species of flowering plants. Coccoloba cowellii Britton is an endemic and critically endangered representative of this genus that only grows in the municipality of Camagüey, province of Cuba. Preliminary investigation of its total methanolic extract led to the discovery of promising antifungal activity. In the present study, a bioassay-guided fractionation by means of flash chromatography and employing 1D and 2D NMR, and NMR-based machine learning tool "Small Molecule Accurate Recognition Technology" (SMART 2.1, available at https://smart.ucsd.edu/classic), allowed the isolation of guercetin and four methoxyflavonoids: 3-O-methylquercetin, myricetin 3,3',4'-trimethyl ether, 6methoxymyricetin 3,4'-dimethyl ether, and 6-methoxymyricetin 3,3',4'-trimethyl ether. The leaf extract, fractions, and compounds were tested against various fungi, and showed a strong antifungal effect against Cryptococcus neoformans and various *Candida* spp. with no cytotoxicity (CC50 > 64.0 μ g/mL) on human foetal lung fibroblasts (MRC-5 SV2 cells), determined by the resazurin assay. The total methanolic extract showed higher and broader activity when compared with the fractions and mixture of compounds.

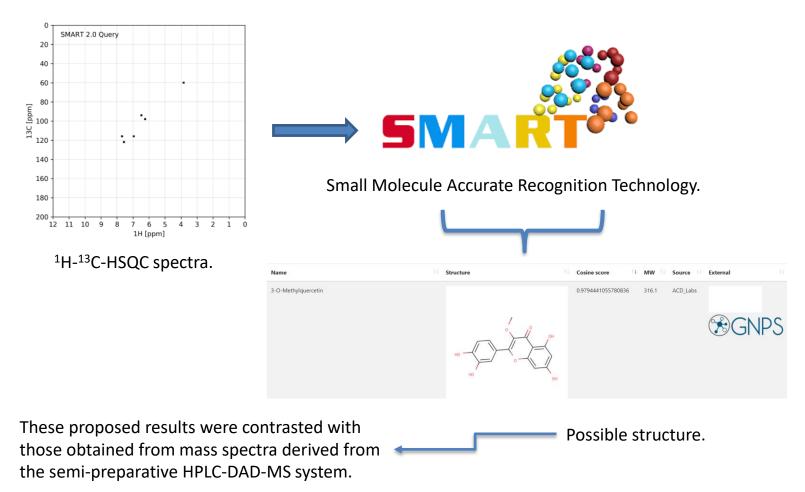
Keywords: antifungal; *Coccoloba cowellii*; methoxyflavonoids; Polygonaceae; UHPLC-ESI-QTOF-MS.



Growth environment (municipality of Camagüey, Cuba) and flowering branch of *C. cowellii* Britton

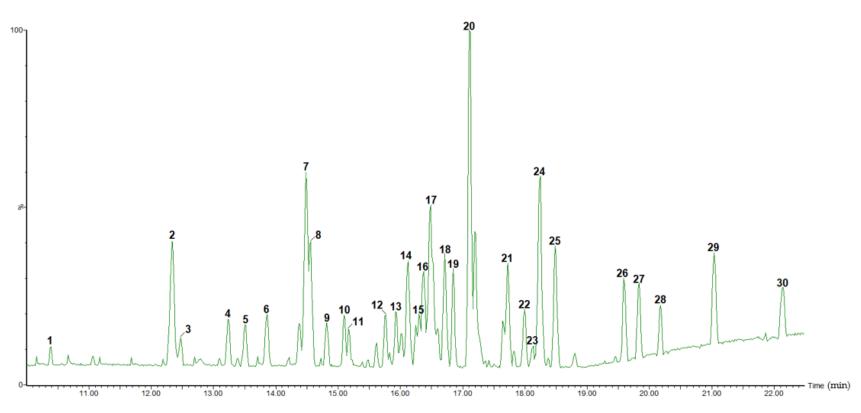


General scheme of the bioassay-guided fractionation performed on *C. cowellii* leaves



General scheme of the bioassay-guided fractionation performed on *C. cowellii* leaves

Prediction of chemical structures from NMR data


Table 1. In vitro antifungal and cytotoxic activity of the total extract and fractions from C. cowellii leaves.

Test Sample	Cytotoxicity (CC ₅₀ µg/mL)	Antifungal Screening (IC ₅₀ μg/mL)							
	MRC-5	Aspergillus fumigatus	Cryptococcus neoformans	Candida albicans	Candida parapsilosis	Candida glabrata	Candida tropicalis		
TE	>64.0	>64.0	2.7 ± 2.0	1.7 ± 0.6	8.5 ± 0.5	0.4 ± 0.0	21.2 ± 1.8		
MeOH90-F	>64.0	>64.0	10.5 ± 1.0	8.3 ± 0.9	13.3 ± 1.1	2.4 ± 0.4	>64.0		
nH-F	29.3 ± 1.5	Nd	>64.0	>64.0	Nd	Nd	Nd		
EtOAc-F	>64.0	Nd	>64.0	>64.0	Nd	Nd	Nd		
nBut-F	>64.0	Nd	>64.0	>64.0	Nd	Nd	Nd		
Re-F	>64.0	Nd	>64.0	>64.0	Nd	Nd	Nd		
Miconazole	19.8 ± 0.7	3.7 ± 0.5	0.2 ± 0.0	3.4 ± 0.2	1.1 ± 0.1	0.2 ± 0.0	3.6 ± 1.0		

TE: total extract; MeOH90-F: methanol 90% fraction; nH-F: n-hexane fraction; EtOAc-F: ethyl acetate fraction; nBut-F: n-butanol fraction; Re-F: residual fraction; MRC-5: human foetal lung fibroblasts; Nd: not determined. Values are means ± SD of three replicates.

HPLC-DAD/QTOF-MS of the methanol 90% fraction from C. cowellii

Base peak intensity (BPI) chromatogram (in negative ion mode) of the MeOH90-F fraction.

Table 2. Chemical composition of the methanol 90% fraction of the total extract of *C. cowellii*. (part 1)

Peak No.	Rt (min)	[M-H] ⁻ (m/z)	Theoretical Mass (m/z)	Accuracy (ppm)	MS/MS lons	MF	Tentative Identification
1	10.39	493.0620	493.0618	0.4	317.0281/315.0105/ 287.0563/178.9872	C ₂₁ H ₁₇ O ₁₄	Myricetin-O-glucuronide
2	12.33	433.0775	433.0771	0.9	301.0344/300.0273/ 271.0247/255.0294	$C_{20}H_{17}O_{11}$	Quercetin-O-pentoside 1
3	12.47	433.0763	433.0771	-1.8	301.0357/300.0253/ 271.0255/255.0187	$C_{20}H_{17}O_{11}$	Quercetin-O-pentoside 2
4	13.23	555.2225	555.2230	-0.9	507.2011/477.1888	$C_{30}H_{35}O_{10}$	Trilignol G(8–O–4)G(8–5)G
5	13.50	555.2216	555.2230	-2.5	507.1984/477.1816/ 341.1288/329.1320/ 195.0650/165.0273	C ₃₀ H ₃₅ O ₁₀	Trilignol G(8–O–4)G(8–5)G
6	13.85	312.1228	312.1236	-2.6	197.8091/195.8118/ 116.9287	-	Unknown
7	14.49	585.2429	585.2430	-0.2	537.2122/507.1984/ 371.1458/359.1454/ 195.0658/165.0374		Trilignol G(8–O–4)X(8–8)X
8	14.56	583.2163	583.2179	-2.7	535.1965/505.1852/ 369.1333/357.1330/ 195.0658/165.0301		Trilignol G(8–O–4)S(8–5)G
9	14.82	585.2329	585.2336	-1.2	537.2112/507.1821/ 359.1410/195.0639/ 165.0157		Trilignol G(8–O–4)X(8–8)X

Rt, retention time; MF, molecular formula.

Table 2. Chemical composition of the methanol 90% fraction of the total extract of *C. cowellii*. (part 2)

Peak No.	Rt (min)	[M-H] ⁻ (m/z)	Theoretical Mass (m/z)	Accuracy (ppm)	MS/MS lons	MF	Tentative Identification
10	15.09	585.2331	585.2336	-0.9	537.2020/507.1826/ 371.1437/359.1445/ 195.0655/165.0552		Trilignol G(8–O–4)X(8–8)X
11	15.17	583.2172	583.2179	-1.2	369.1325/357.1325/ 195.0656/165.0551	$C_{31}H_{35}O_{11}$	Trilignol G(8–O–4)S(8–5)G
12	15.76	583.2177	583.2179	-0.3	565.2036/489.1883/ 477.1877/417.1481/ 371.1414/359.1383/ 193.0497	-	Unknown
13	16.02	583.2177	583.2179	-0.3	581.1965/535.1947/ 387.1389/367.1148/ 195.0648/165.0052	-	Unknown
14	16.12	315.0513	315.0505	2.5	300.0270/271.0238	$C_{16}H_{11}O_7$	3-O-Methylquercetin
15	16.24	375.0704	375.0716	-3.2	360.0495/345.0239/ 330.0117/327.1691/ 317.0265/300.0250/ 171.0929	$C_{18}H_{15}O_{9}$	6-Methoxymyricetin 3,4'-dimethyl ether
16	16.37	327.2177	327.2171	1.8	285.0412/256.0378/ 229.1443/211.1334/ 171.1033	-	Unknown

Rt, retention time; MF, molecular formula.

Table 2. Chemical composition of the methanol 90% fraction of the total extract of C. cowellii. (part 3)

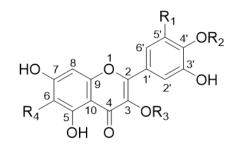
Peak No.	Rt (min)	[M-H] ⁻ (m/z)	Theoretical Mass (m/z)	Accuracy (ppm)	MS/MS lons	MF	Tentative Identification
17	16.49	345.0612	345.0610	0.6	301.0422	-	Unknown
18	16.71	315.0510	315.0505	1.6	300.0278/271.0252/ 255.0304/243.0296	$C_{16}H_{11}O_7$	O-Methylquercetin
19	16.85	809.3019	809.3021	-0.2	761.2747/613.2260/ 565.2047/417.1499/ 195.0660	$C_{42}H_{49}O_{16}$	Tetralignol G(8–O–4)G(8–O–4)S(8– 8)S
20	17.11	331.2645	331.2637	2.4	313.2187	-	Unknown
21	17.73	389.0888	389.0873	3.9	374.0632/359.0416/ 331.0509/316.0201/ 287.2135		6-Methoxymyricetin 3,3',4'- trimethyl ether
22	17.99	359.0764	359.0767	-0.8	344.0509/329.0413/3 01.0361/286.0089/27 3.0367/257.9776/242 .0100/222.9688/162. 8474		Myricetin 3,3',4'-trimethyl ether
23	18.13	359.0751	359.0767	-4.5	344.0493/329.0565/3 01.0364/286.0081/25 7.9645/222.9675/162 .8543	C ₁₈ H ₁₅ O ₈	Methoxyquercetin dimethyl ether 1

Rt, retention time; MF, molecular formula.

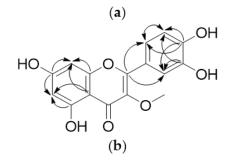
Table 2. Chemical composition of the methanol 90% fraction of the total extract of *C. cowellii*. (part 4)

Peak No.	Rt (min)	[M-H] ⁻ (m/z)	Theoretical Mass (m/z)	Accuracy (ppm)	MS/MS lons	MF	Tentative Identification
24	18.25	389.0870	389.0873	-0.8	374.0634/359.0398/3 44.0168/316.0218/30 0.9995/245.0086	$C_{19}H_{17}O_{9}$	Methoxymyricetin trimethyl ether
25	18.48	359.0771	359.0767	1.1	344.0535/329.0302/3 01.0346/286.0122/25 8.0163	$C_{18}H_{15}O_8$	Methoxyquercetin dimethyl ether 2
26	19.58	403.1047	403.1029	4.5	388.0773/373.0557/3 58.0301/345.0566/33 0.0363/315.0175/257 .9344/222.9669	$C_{20}H_{19}O_{9}$	Methoxymyricetin tetramethyl ether
27	19.83	373.0939	373.0923	4.3	358.0623/343.0453/3 28.0199/315.0660/30 0.0232/285.0035/257 .9385/222.9662	$C_{19}H_{17}O_8$	Myricetin tetramethyl ether
28	20.18	349.2156	349.2168	-3.4	313.2335/251.1598/1 99.8060/197.8089/19 5.8118/116.9286	-	Unknown
29	21.03	721.3658	721.3647	1.5	675.3555/415.1435/3 97.1342/277.1996/25 7.9326/222.9646	-	Unknown
30	22.15	559.3133	559.3118	2.7	567.2234/505.1054/3 20.0494/277.2092/25 7.9327/222.9659	-	Unknown

Rt, retention time; MF, molecular formula.


Table 3. In vitro antifungal and cytotoxic activity of subfraction M-6 and the binary mixtures M-6A, M-6B,and M-6C from C. cowellii leaves.

Test Sample	Cytotoxicity (CC ₅₀ µg/mL)	Antifungal Screening (IC ₅₀ μg/mL)							
	MRC-5	A. fumigatus	C. neoformans	C. albicans	C. parapsilosis	C. glabrata	C. tropicalis		
M-6	>64.0	>64.0	50.3 ± 9.2	>64.0	>64.0	9.5 ± 1.1	>64.0		
M-6A	>64.0	>64.0	>64.0	>64.0	>64.0	7.9 ± 1.3	>64.0		
M-6B	>64.0	>64.0	59.5 ± 6.4	>64.0	>64.0	9.1 ± 1.8	>64.0		
M-6C	>32.0	>32.0	8.3 ± 0.0	>32.0	>32.0	3.8 ± 0.0	>32.0		
Miconazole	19.8 ± 0.7	3.7 ± 0.5	0.2 ± 0.0	3.4 ± 0.2	1.1 ± 0.1	0.2 ± 0.0	3.6 ± 1.0		


M-6: subfraction of the flash chromatography of MeOH90-F; M-6A: compound I and minor impurity; M-6B: mixture of compounds II and III; M-6C: mixture of compounds IV and V. MRC-5: human foetal lung fibroblasts. Values are means ± SD of three replicates..

Compounds isolated from the methanol 90% fraction of C. cowellii

Compound	\mathbf{R}_{1}	\mathbf{R}_2	R3	\mathbf{R}_4
Ī	-H	- H	-H	-H
II	-H	-H	-CH3	-H
III	-OH	-CH3	-CH3	-OCH ₃
IV	-OCH3	-CH3	-CH3	-OCH3
V	-OCH3	-CH3	-CH3	- H

(a) Structures of compounds isolated from leaves of *C. cowellii*.

(b) Correlations ${}^{2}J_{H-C}$ and ${}^{3}J_{H-C}$ observed in the HMBC spectra of compound II.

Conclusions

In this study, five secondary metabolites were isolated and characterised from the MeOH90-F fraction of the total extract of *C. cowellii* by means of a combined methodology of NMR and MS analysis. All five are reported here for the first time for both the plant and the genus. Another 16 compounds were tentatively characterised employing UHPLC-HRMS. *C. cowellii* extract was confirmed to have good antifungal activity against a second fungal/yeast panel, while fractions and mixtures of compounds obtained from the bioassay-guided fractionation showed acceptable activity specifically against *C. glabrata* and C. *neoformans.* These results highlight the possible use of this plant as a natural antifungal and contribute to a better understanding of the phytochemistry and biological activities of the genus *Coccoloba*.

Acknowledgments

This research was funded by VLIR-IUC, grant number CU2019IUC030A105-77143 and VLIR-TEAM, grant number CU2017TEA433A102.

