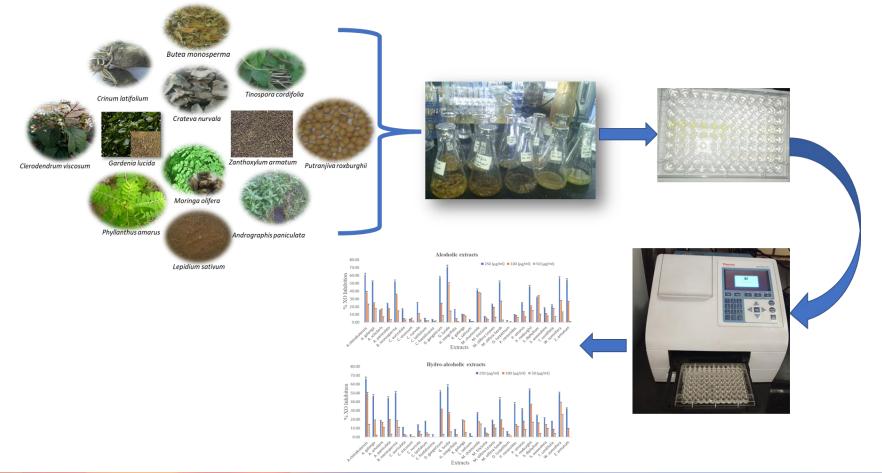


The 7th International Electronic Conference on Medicinal Chemistry (ECMC 2021)

01-30 NOVEMBER 2021 | ONLINE

In-vitro Screening of Extracts for their Xanthine Oxidase Inhibitory Potential of Some Indian Medicinal Plants and Active Fraction of Selected Plants

Ranjana^{1,*}, Karuna Shanker^{1,*}


¹Analytical Chemistry Department, Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India

* Corresponding author: <u>kspklko@yahoo.com</u>

In-vitro Screening of Extracts for their Xanthine Oxidase Inhibitory Potential of Some Indian Medicinal Plants and Active Fraction of Selected Plants

Graphical Abstract

Abstract

Background: The activity of xanthine oxidase (XO) enzyme plays main role in the induction of hyperuricemia, gout and raising superoxide radical level in blood through oxidation of xanthine and hypoxanthine into uric acid. Thus, inhibition of xanthine oxidase activity is regarded as an effective treatment of hyperuricemia, gout, inflammation and other XO associated diseases.

Objective: Twenty- six plants extracts were assayed for the novel XO inhibitors to develop a potent lead for the management of hyperuricemia gout, and other XO metabolism related diseases / disorders.

Materials and methods: Traditional knowledge based prioritized plant extracts were screened for XO inhibitory potential through *in-vitro* assay. Microtiter plate based high through spectrophotometric method was employed to determine the inhibition by measuring the uric acid at 295 nm.

Results: The *in-vitro* assay of extracts was found as eight alcoholic and six hydroalcoholic extract found to have highest inhibition more than 50% at a concentration of 250 μ g/ml in the assay mixture. While thirteen plant extracts found to have moderate inhibition 20-30% at 250 μ g/ml. Plants *Alectra chitrakutensis, Butea monosperma, Dasmodium gangeticum, Gardenia lucida, Zanthoxylum armatum* investigated their IC₅₀ values below 250 μ g/ml.

Conclusion: On the basis of detail phytochemical exploration both from data mining and 3qualitative evaluation, we found that phenolic rich plants particularly *Z. armatum* and *G. lucida* showed highest XOI potential. Present study correlates with the traditional usages of these plants and provides basis for further investigation for lead of natural XOI for treatment of gout and other XO-related disorders.

Keywords: Xanthine oxidase inhibitors; hyperuricemia; Gout; Allopurinol; Uric acid

Introduction

Plants have been widely used for healing diverse diseases, since ancient times. It is an important sources of effective and minimal side effects natural products which are vary vastly in chemical nature, mechanism of actions and biological activity. Plants used in traditional system of medicines and screenings of their extract for biological studies may provide an idea to identify newer medicaments for the treatment or prevention of various ailments.

Gouty arthritis is described by the accumulation of monosodium urate crystals in kidneys, joints and surrounding tissues. Hyperuricemia is also occur due to increase of serum uric acid level, thus there are two strategies to reduce serum uric acid level. First, by inhibiting the uric acid production, and second is to accelerate the uric acid excretion though urine.

Uric acid is the end product of purine metabolism, Xanthine oxidase (XO) an enzyme which catalyzes the purine catabolism. XO catalyzes the oxidation of hypoxanthine to xanthine and then to uric acid, simultaneous increases level of superoxide free radicals (Figure. 1).

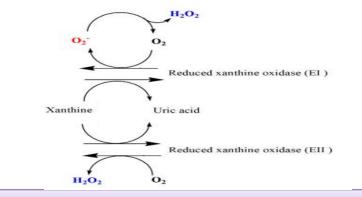
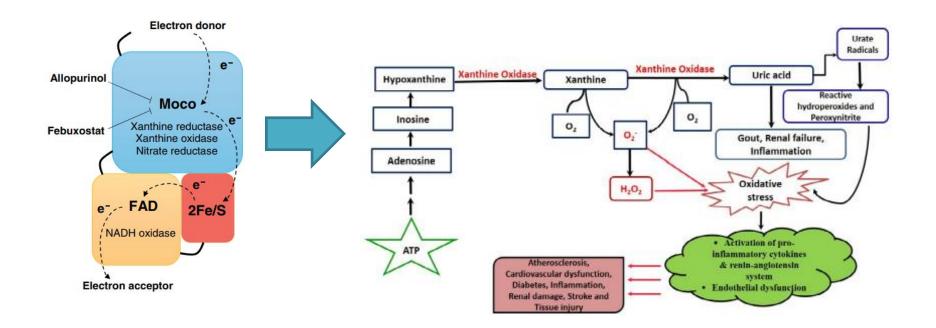
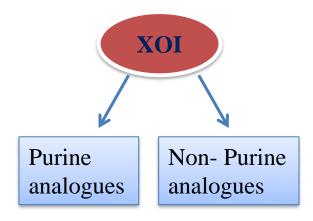



Figure. 1: Proposed mechanism of the O_2^- or H_2O_2 generation and uric acid formation

Figure. 2: Structure and enzymic activities and pathophysiology of xanthine oxidase to causing various diseases (Image adopted from M.G. Battelli et al. (2018) 2557–2565 and Ayyappan, P. et al. (2020) 391-416



Introduction

> The abnormal activity of XO causes a series of pathological condition. Therefor the inhibition of XO activity is regarded as an effective treatment of hyperuricemia, gout, inflammation and other XO associated diseases.

Among the few therapeutic options available for allopurinol has remained the main inhibitor of XO with clinical use since 1966, although causing undesirable side effects, such as hypersensitivity syndrome, impaired liver function, and renal toxicity, which have motivated the search for new therapeutic options

Commercially available xanthine oxidase inhibitors (XOI)

Synthetic XO inhibitors

Purine analogs					
XO Inhibitors	IC ₅₀				
Allopurinol	5.9 μM				
2-alkylhypoxanthines	20.5 μM				
Neoptrin	3.1µM				
Lumazine	7.4µM				
6-hydoxy lumazine	0.2µM				
Non-Purine analogs					
Febuxostat	20nM				
Y-700	5.8nM				
Thimaltol	104µM				
N-hydroxyguanidines	295.7µM				

➤To the discovery of potent XO inhibitors from plants, *in-vitro* screening of plants extracts for pharmacological activity may lead to identification of new medicinal entity, for the treatment or prevention of gout, hyperuricemia or various diseases related to overproduction of uric acid.

Materials and method

Chemicals and Regents: Allopurinol and xanthine were purchased from Sigma-Aldrich Chemicals (St. Louis, MO, USA). xanthine oxidase (buttermilk), Dimethylsulphoxide (DMSO), hydrochloric acid (HCl), Potassium di-hydrogen phosphate and other reagents of analytical grade were obtained from Merck (Darmstadt, FR, Germany).

Instruments: UV–Vis spectrophotometer (Multiskan GO Microplate, Thermo Scientific, USA) was used for the measurements of absorption of samples.

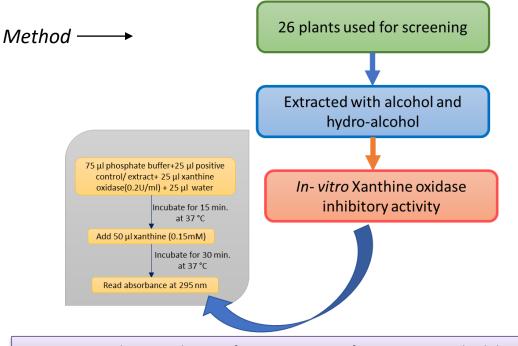


Figure. 3: Schematic diagram for in vitro assay of XOI activity methodology

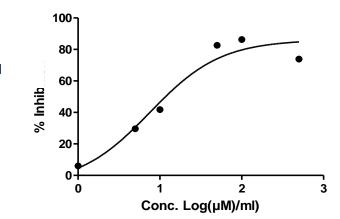
Ref: L. D. Kong et al. / Journal of Ethnopharmacology 73 (2000) 199-207

Results and discussion

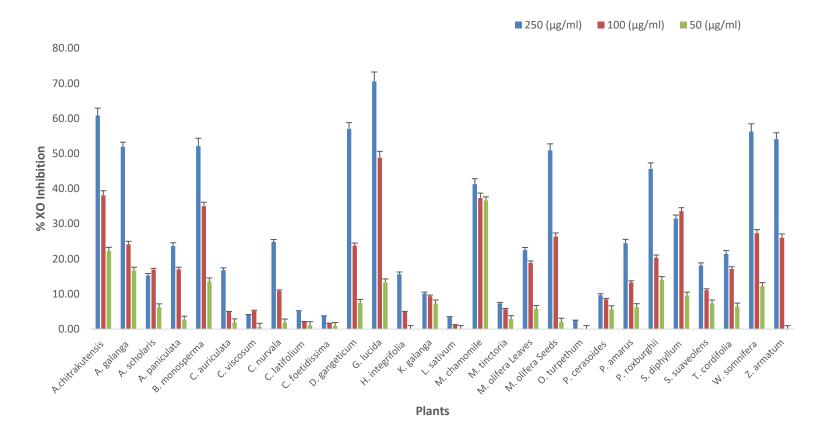
The *in-vitro* assay of XOI activity extracts was found as eight alcoholic and six hydroalcoholic extract found to have highest inhibition more than 50% at a concentration of 250 μ g/ml. While thirteen plant extracts found to have moderate inhibition 20-30% at 250 μ g/ml (Table.1).

Table:1 XO	activity of alcoholic ar	d hydro-alcoholic extracts	of medicinal plants
------------	--------------------------	----------------------------	---------------------

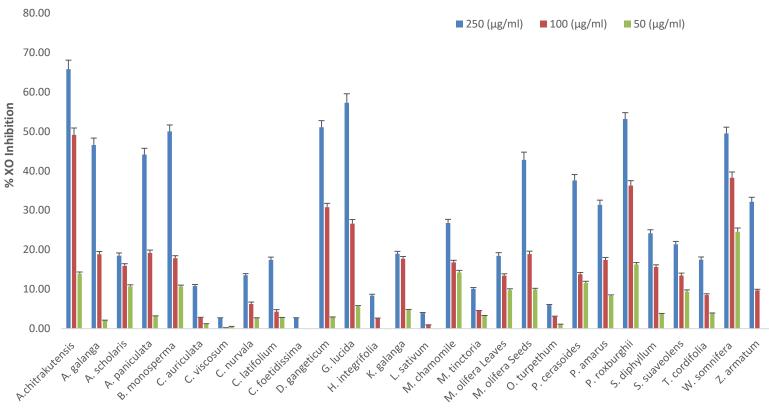
S. no.	Plants/part	Extract	Inhibition (%)			IC ₅₀
			250 (μg/ml)	100 (µg/ml)	50 (µg/ml)	
1	Alectra chitrakutensis	Alcoholic	60.82±2.10	38.10±1.33	22.29±0.77	< 150
	(Rhizomes)	Hydroalcoholic	65.80±2.27	49.13±1.71	13.90±0.45	µg/ml
2	Alpinia galanga	Alcoholic	51.94±1.28	24.09±0.91	16.63±0.6	< 250
	(Rhizomes)	Hydroalcoholic	46.56±1.74	18.85±0.68	02.06±0.07	µg/ml
3	Alstonia scholaris	Alcoholic	15.25±0.57	16.88±0.44	6.16±0.16	
	(Stem)	Hydroalcoholic	18.50±0.68	15.90±0.57	10.71±0.38	
4	Andrographis paniculata	Alcoholic	23.66±0.92	16.96±0.64	2.67±0.08	
	(Aerial)	Hydroalcoholic	44.10±1.62	19.19±0.70	3.12±0.11	
5	Butea monosperma	Alcoholic	52.14±2.23	35.00±1.15	13.57±0.42	< 250
	(Flowers)	Hydroalcoholic	50.00±1.65	17.85±0.64	10.71±0.33	µg/ml
6	Cassia angustifolia	Alcoholic	16.78±0.67	4.89±0.28	1.9±0.04	
	(Leaves)	Hydroalcoholic	10.78±0.42	02.78±0.08	1.21±0.04	


7	Clerodendrum viscosum	Alcoholic	3.98±0.14	5.14±0.24		
	(Leaves)	Hydroalcoholic	2.65±0.09	0.23±0.01	No inhibition	
8	Crateva nurvala	Alcoholic	24.83±0.67	10.86±0.28	1.87±0.02	
	(Bark)	Hydroalcoholic	13.53±0.41	6.23±0.51	2.68±0.08	
9	Crinum latifolium	Alcoholic	5.03±0.21	2.07±0.08	1.09±0.04	
	(Bulb)	Hydroalcoholic	9.44±0.26	4.28±0.54	2.78±0.07	
10	Dasmodium gangeticum	Alcoholic	56.99±1.84	23.77±0.75	7.46±0.23	<250 µg/ml
	(Root)	Hydroalcoholic	51.04±1.68	30.76±0.99	2.89±0.06	
11	Gardenia lucida	Alcoholic	70.56±2.66	48.79±1.82	13.30±0.49	<100 µg/ml
	(Gum resin)	Hydroalcoholic	57.25±2.28	26.61±1.04	5.64±0.23	
12	Holoptelea integrifolia	Alcoholic	15.625±0.61	4.89±0.16		
	(Fruits)	Hydroalcoholic	8.35±0.35	2.56±0.11	No inhibition	
13	Kaempferia galanga	Alcoholic	10.08±0.44	9.38±0.32	7.29±0.26	
	(Rhizome)	Hydroalcoholic	18.96±0.61	17.71±0.57	4.75±0.13	
14	Lepidium sativum	Alcoholic	3.42±0.13	1.24±0.04	No inhibition	
	(Seeds)	Hydroalcoholic	3.94±0.13	0.93±0.03		

15	Matricaria chamomile	Alcoholic	41.3±1.55	37.33±1.40	36.68±1.36	
	(Aerial)	Hydroalcoholic	26.78±0.93	16.78±0.52	14.25±0.49	
16	Morinda tinctoria	Alcoholic	7.25±0.33	5.64±0.24	2.82±0.09	
	(Bark)	Hydroalcoholic	10.08±0.34	4.43±0.133	3.21±0.14	
17	Moringa olifera	Alcoholic	22.48±0.74	18.79±0.61	5.72±0.17	
	(leaves)	Hydroalcoholic	18.45±0.82	13.42±0.47	9.73±0.36	
	Moringa olifera	Alcoholic	50.89±1.89	26.34±1.04	2.09±0.09	
	(seeds)	Hydroalcoholic	42.8±1.93	18.89±0.73	9.87±0.36	
18	Operculina turpethum	Alcoholic	2.44±0.08	3.02±0.13	1.09±0.04	
	(Root)	Hydroalcoholic	5.95±0.18	No inhibition	No inhibition	
19	Prunus cerasoides	Alcoholic	9.64±0.43	8.45±0.28	5.62±0.24	
	(Bark)	Hydroalcoholic	7.56±1.47	13.78±0.46	11.54±0.47	
20	Phyllanthus amarus	Alcoholic	24.47±1.06	13.28±0.48	6.23±0.28	
	(Aerial)	Hydroalcoholic	31.38±1.17	17.39±0.63	8.26±0.32	
21	Putranjiva roxburghii	Alcoholic	45.625±1.71	20.3125±0.76	13.9375±0.49	<150 µg/ml
	(Seeds)	Hydroalcoholic	53.125±1.63	36.25±1.26	16.25±0.48	
22	Solanum diphyllum	Alcoholic	31.42±1.06	33.57±1.02	9.52±0.31	
	(Leaves)	Hydroalcoholic	24.15±0.93	15.60±0.56	3.75±0.18	


23	Stereospermum suaveolens	Alcoholic	18.10±0.73	11.08±0.40	7.30±0.32	
	(Bark)	Hydroalcoholic	21.35±0.75	13.48±0.58	9.37±0.43	
24	Tinospora cordifolia	Alcoholic	21.42±0.95	17.14±0.63	6.42±0.18	
	(Rhizome)	Hydroalcoholic	17.46±0.72	8.51±0.32	3.83±0.12	
25	Withenia somnifera	Alcoholic	56.29±2.18	27.27±1.06	12.23±0.39	
	(Fruits)	Hydroalcoholic	49.46±1.59	38.23±1.47	24.53±0.95	
26	Zanthoxylum armatum	Alcoholic	64.08±1.85	26.02±1.08	04.50±0.18	<100 µg/ml
	(Fruits)	Hydroalcoholic	32.14±1.16	9.69±0.28	No inhibition	

Positive control (Alopurinol) IC 50 =7.5μM



Alcoholic extracts

Figure.4: Results are expressed as percent XOI of alcoholic extracts; values expressed as mean ± SD for triplicate experiments

Hydro-alcoholic extracts

Plants

Figure.5: Results are expressed as percent XOI of hydro-alcoholic extracts; values expressed as mean ± SD for triplicate experiments

Conclusions

- Plants Alectra chitrakutensis, Butea monosperma, Dasmodium gangeticum, Gardenia lucida, Zanthoxylum armatum investigated their IC₅₀ values below 250 μg/ml.
- In conclusion, this study indicates two medicinal plants Z. armatum and G. lucida found highest XOI potential. It may be useful for the treatment of hyperuricemia and gout and other associated diseases. Present study correlates with the traditional usages of these plants and provides basis for further investigation for lead of natural XOI for treatment of gout and other XO-related disorders.

Acknowledgments

Authors would like to thank the Director, CSIR-CIMAP, Lucknow for providing all necessary research facilities and laboratory for this work.

