Synthesis, molecular docking, antioxidant and cholinesterase inhibitory activity of Coumarin based tri-hybridized molecules: An MTDL approach for the development of Anti-Alzheimer drugs.

Namy George^{1*}, Shah Alam Khan¹, Khalid Al Balushi¹, Majed Abukhader¹, Bushra Al Sabahai¹ College of Pharmacy, National University of Science & Technology, PO Box 620, PC 130, Muscat, Sultanate of Oman

Introduction

•Alzheimer's disease(AD) also known as "senile dementia" multi is targeted а neurodegenerative disease.

•WHO in 2012 reported approximately 40 million people suffered from AD worldwide.

•We have proposed the synthesis, characterization and in-vitro assavs of trihybridized compounds in which Coumarin is tethered to 1, 3, 4-oxadiazole derivatives that multiple act targets such can on as Cycloxygenase (COX2), acetylcholinesterase (AChE) and butrylcholinesterase (BuChE). DPPH radical scavenging ability of the hybrid molecules is also assessed.

Aim and objectives

•To synthesize and evaluate inhibitory activity of designed trihybridized compounds on COX2, AChE and BUChE enzymes. Determination of DPPH radical scavenging activity of the designed Conclusion ligands.

Methodology

•The key intermediates were synthesized by Pechman reaction and their purity was checked prior moving to the next step.

 The structures of all newly synthesized compounds were characterized with the help

of IR, ¹H & ¹³C NMR and Mass spectral studies. The spectral data was consistent with the chemical structure.

•All the synthesized hybrids exhibited good to moderate anti-cholinesterase, COX2 inhibition and antioxidant property.

•Compound 013 exhibited IC₅₀ of 28.67 μ M ± 2.91, 34.71 μ M ±2.87 for the enzymes AChE and BuChE respectively. It showed 71.34% inhibition of COX 2 enzyme at 10 μ M and IC₅₀ of 65.57 μ M ±5.62 for DPPH radical scavenging. Standard galantamine used showed IC₅₀ value of 74.74

Scheme : Scheme 2

 μ M± 0.54 for the enzyme AChE and standard gallic acid (for antioxidant) showed IC_{50} of 65.1µM ±5.50.

•Compound 014exhibited IC₅₀ of 43.29μM ±3.44 and 45.70µM ±2.02 respectively. The compound showed 72.67% inhibition of the enzyme at 10 μ M concentration. It showed IC₅₀ of 48.12µM ±1.67 for DPPH radical scavenging activity. Compound 015 showed the best BuChE inhibitory activity with IC₅₀ value of 38.37µM±0.85.

Compound 013 emerged as the potent MTDL

acting at three targets. It also showed better inhibition of AChE than positive control.

•In silico prediction and biological assays conducted proved that the proposed compounds in particular compound 013 and 014 showed great potential to act against AD by inhibiting the most common targets observed in the disease.

 Further investigations and modification of these proposed compounds can lead to the development of highly potent therapeutics for the treatment of AD.

Reference

 Sang Z, Wang K, Wang H, Wang H, Ma Q, Han X, Ye M, Yu L, Liu W. Design, synthesis and evaluation biological of 2-acetyl-5-O-(aminoalkyl) phenol derivatives ลร multifunctional agents for the treatment of Alzheimer's disease. Bioorg Med Chem. 2017;27:5046-5052

 Pan H, Qiu H, Zhang K, Zhang P, Liang W, Yang M, Mou C, Lin M, He M, Xiao X, Zhang D. Fascaplysin Derivatives are potent multitarget agents against Alzheimer's disease: in vitro evidence. ACS chemical and in vivo neuroscience. 2019 Oct 22;10(11):4741-56.

Acknowledgment

Authors would like to thank MoHERI for the financial support (MOHERI/FP/RGP/HSS/19/232/2019)

The 7th International Electronic Conference on Medicinal Chemistry 01-30 NOVEMBER 2021 | ONLINE