New 3-(3-benzenesulfonylguanidinyl)thiourea derivatives with activity against methicillin-resistant *Staphylococcus* spp.

Aneta Pogorzelska¹, Jarosław Sławiński¹, Daria Miś¹, Katarzyna Turecka²

¹Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdansk

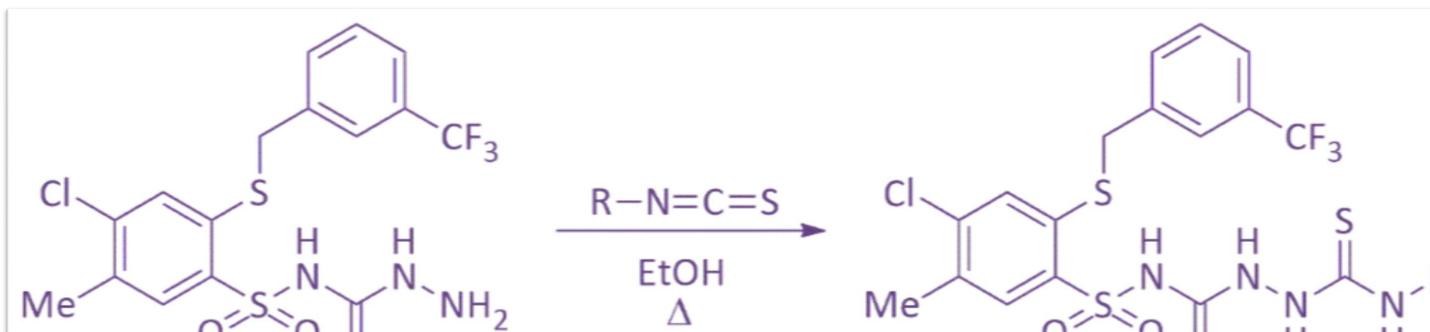
²Department of Microbiology, Faculty of Pharmacy, Medical University of Gdansk

Introduction

Methicilin-resistant staph, especially MRSA, has become major problems of modern epidemiology

Antibacterial activity

The synthesized compounds **2-6** were tested for antibacterial activity against *Staphylococcus aureus*,


and chemotherapy. One of the methods of combating the growing resistance of bacterial strains is the search for new antibacterial agents. The numerous studies prove that the novel class of promising compounds with activity against Staphylococcus spp., including MRSA, comprises derivatives with thiosemicarbazide fragment [1-2]. This encourages us to the incorporation of structural the mentioned element to the benzenesulfonamide skeleton. As a result, a series of new 3-(3-benzenesulfonylguanidinyl) thiourea derivatives were synthesized.

Synthesis

The designed compounds 2-6 were obtained by

methicilin-resistant S. (MRSA), aureus Staphylococcus epidermidis, methicilin-resistant S. epidermidis (MRSE), Escherichia coli, Klebsiella pneumoniae, and *Pseudomonas* aeruginosa. studies carried The were out using the micro-dilution method, with 11 different concentration of compounds in the range from 0.0975 μ g/ml to 100 μ g/ml. The results were expressed as MIC (minimal inhibitory concentration, the lowest concentration of compound which prevents visible growth of bacteria) and MBC (minimal bactericidal concentration, the lowest concentration of compound that results in bacterial death) values. The obtained data showed that the derivatives **2-6** did not inhibit the growth of Gramnegative bacteria whereas their activity against

nucleophilic addition of *N*-amino-*N'*-{4-chloro-5-methyl-2-[(3-trifluoromethylphenyl)methylthio]benzenesulfonyl} guanidine with appropriate isothiocyanates with variable R substituents. The reaction was carried out in boiling ethanol under reflux, with stirring for 1.5 – 72h. The final compounds were isolated by filtration and further crystallization. The identity of the products was confirmed by spectroscopic methods – infrared spectroscopy and proton nuclear magnetic resonance.

Gram-positive strains was remarkable.

	S. aureus		MRSA		S. epidermidis		MRSE	
Compd	MIC [µg/ml]	MBC [µg/ml]	MIC [µg/ml]	MBC [µg/ml]	MIC [µg/ml]	MBC [µg/ml]	MIC [µg/ml]	MBC [µg/ml]
2	6.25	12.5	>100	>100	12.5	25	>100	>100
3	3.125	6.25	3.125	>100	1.56	3.125	>100	>100
4	3.125	6.25	>100	>100	6.25	12.5	>100	>100
5	3.125	6.25	3.125	3.125	3.125	6.25	3.125	6.25
6	6.25	12.5	>100	>100	6.25	12.5	>100	>100

The best antibacterial activity was noticed for compound **5** (R = 3,4-(Cl)₂C₆H₃) which inhibited growth of all tested Staphylococcus strains and displayed bactericidal effect (MIC = 3.125 μ g/ml, MBC in the range of 3.125 – 6.25 μ g/ml). Derivative **3** (R = 4-Cl-C₆H₄) showed potency similar to that of **5** against non-methicilin resistant staph

0^ (NH	2		O ^r ^N NH	H
1				2-6	
Compd	2	3	4	5	6
R	Ph	4-CI-C ₆ H ₄	4-F-C ₆ H ₄	3,4-(Cl) ₂ -C ₆ H ₃	iPı

(MIC = $3.125 \ \mu g/ml$, MBC = $6.25 \ \mu g/ml$ against *S. aureus*, MIC = $1.56 \ \mu g/ml$, MBC = $3.125 \ \mu g/ml$ against *S. epidermidis*), however it did not affect MRSE and its effect against MRSA was only bacteriostatic.

REFERENCES: [1] Kowalczyk A. et al. J. Mol. Sci. 22 (2021) 3881; [2] El-Sharief M.A.M.Sh.et al. Eur. J. Med. Chem. 67 (2013) 263.

