

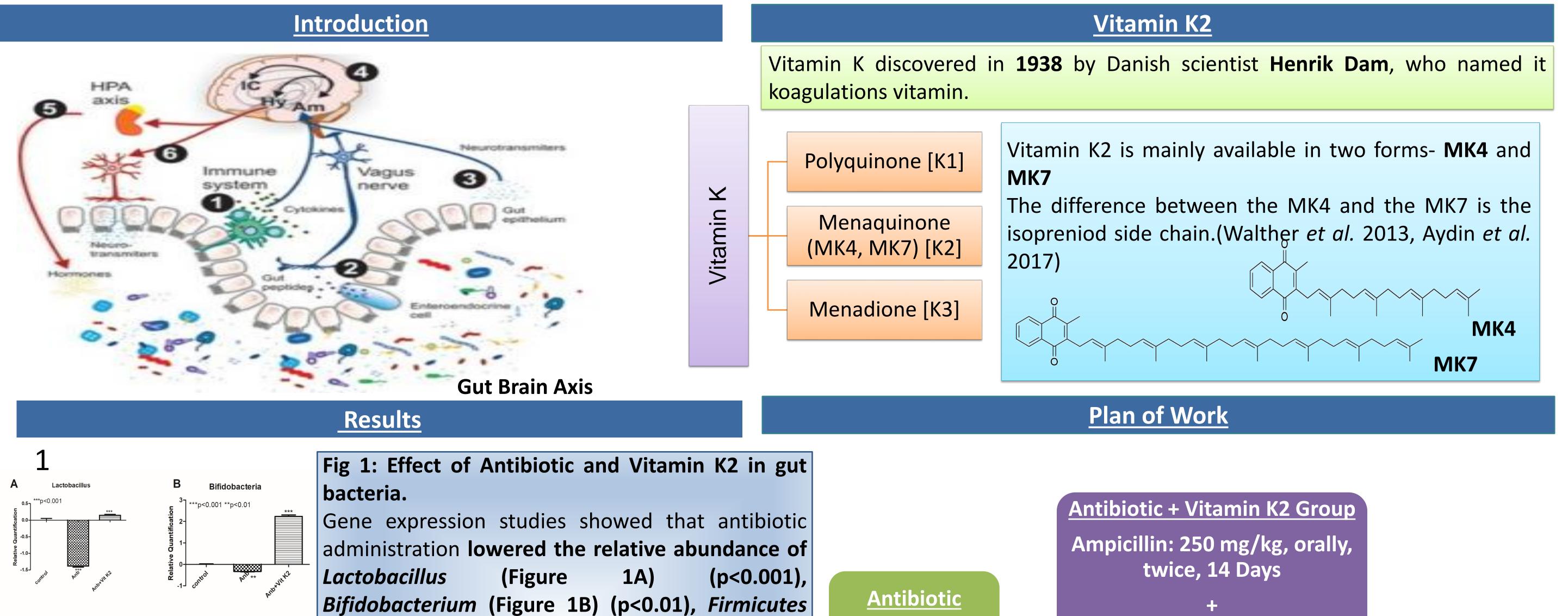
Vitamin K2 a neuroprotector against gut dysbiosis mediated memory decline

Kaberi Chatterjee¹, Suparna Roy Sarkar¹, Papiya Mitra Mazumder¹, Sugato Banerjee²

¹ Birla Institute of Technoogy, Mesra

² National Institute of Pharmaceutical Education and Research (NIPER) Kolkata

Background: Recent studies indicate that imbalance in gut microbiota (dysbiosis) may lead to cognition decline via Gut-Brain-Axis (Bienenstock *et al.,* 2015). Dysbiosis is common adverse effects of many antibiotics and antibiotics are most frequently used pharmaceuticals. K2 is both a tissue and bacterial product and is usually found in animal products or fermented foods, when ingested in adequate amounts can enrich gut flora.

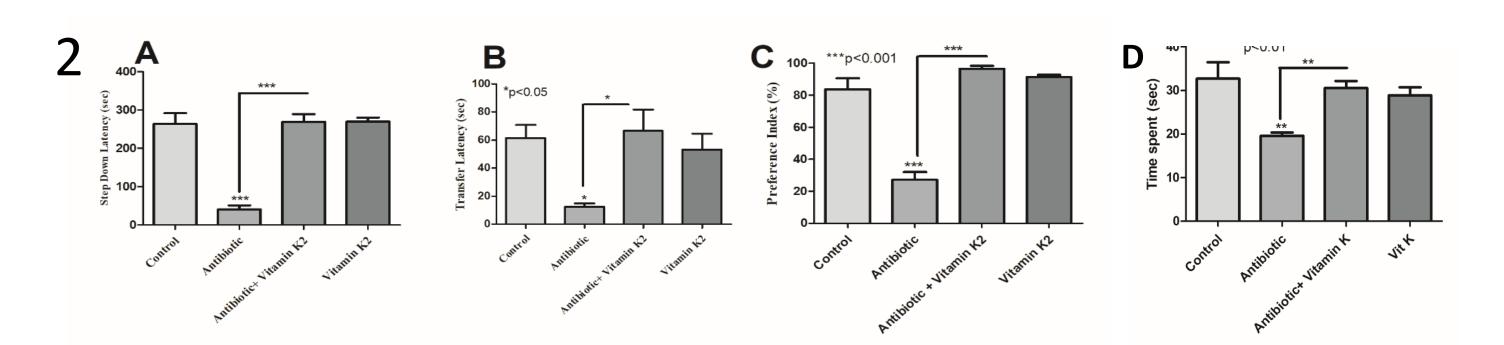

Aims and Objective: The objective of this study is to determine the use of Vtamin K2 as therapeutics against gut dysbiosis associated cognitive decline.

Methodology: Gut dysbiosis was induced in Swiss albino mice by administering Ampicillin for 2 weeks. Gene expression studies of relative abundance of different bacteria was done. Behavioral studies including Elevated plus Maze (EPM), Passive Avoidance test, Morris water maze (MWM) and Novel object recognition (NOR) were performed to analyze cognition changes. In the treatment group Vitamin K2 was administered for 3 weeks in conjunction with antibiotic (2 weeks) (Sarkar SR *et al.,* 2021).

Results: Vitamin K2 treatment to antibiotic administered animals led to significant increase relative abundance of different bacteria also shown significant increase (p<0.05) in transfer latency and decrease (p<0.001) in step down latency over antibiotic treated animals. Similarly time spent in the target quadrant in MWM test (p<0.01) and preference for novel object was significantly higher (p<0.001) for Vitamin K2 + antibiotic animals compared to animals on ampicillin. The above results show antibiotic associated cognitive decline which was reversed after Vitamin K2 treatment.

Discussion and Conclusion: Neurobehavioural and gene expression studies show that administration of Vitamin K2 may reverse the antibiotic associated cognitive

decline in mice. This suggests that gut dysbiosis may be responsible for cognition decline while Vitamin K2 prevented the above process in mice.


(Figure 1C) (p<0.001) and *Clostridium* (Figure 1D) (p<0.05) compared to control. Co-administration of Vitamin K2 enhanced fecal *Lactobacillus*, *Bifidobacterium*, *Firmicutes* and *Clostridium* levels significantly (p<0.001; p<0.01) as compared to antibiotic treated animals.

Group Ampicillin: 250 mg/kg, orally twice Days: 14 Days

Vitamin K2: 100 mcg /Kg, orally 21 Days

Gene Expression Relative Abundance Behavioral Studies Elevated Plus Maze (EPM) Vitamin K2 Group

Vitamin K2: 100 mcg /Kg, orally 21 Days

Fig 2: Effect of antibiotic on cognitive decline.

Antibiotic administration led to significant increase (p<0.05) in transfer latency (2B) and decrease (p<0.001) in step down latency (2A) over treated animals. Time spent in the target quadrant (p<0.01) in MWM test (2D) and preference for novel object was significantly higher (p<0.001) (2C) for Vitamin K2 treated animals compared to animals solely on antibiotic. All values are expressed as Mean ± SEM. p<0.05 is considered statistically significant.

<u>Control</u> <u>Group</u> Normal water / Saline

Conclusion and Discussion

Passive Avoidance Test (PA)

Morris Water Maze (MWM)

Novel Object Recognition

(NOR)

Neurobehavioral and gene expression studies show that administration of Vitamin K2 may reverse the gut dysbiosis associated cognitive decline in mice.

•Aydin S. Can vitamin K synthesis altered by dysbiosis of microbiota be blamed in the etiopathogenesis of venous thrombosis?. Bioscience of microbiota, food and

health. 2017;36(3):73-4

•Bienenstock, J., Kunze, W., Forsythe, P. Microbiota and the gut–brain axis, Nutrition reviews, 2015, 73, 28-31.

•Sarkar SR, Mazumder PM, Chatterjee K, Sarkar A, Adhikary M, Mukhopadhyay K, Banerjee S. Saccharomyces boulardii ameliorates gut dysbiosis associated cognitive decline. Physiology & Behavior. 2021 Jul 1;236:113411.

•Walther, B., Karl, J.P., Booth, S.L. and Boyaval, P., Menaquinones, Bacteria, and the Food Supply: The Relevance of Dairy and Fermented Food Products to Vitamin K Requirements–. Advances in nutrition. 2013; 4(4),463-473

Acknowledgement: Birla Institute of Technology, Mesra, Ranchi-835215

The 7th International Electronic Conference on Medicinal Chemistry 01–30 NOVEMBER 2021 ONLINE