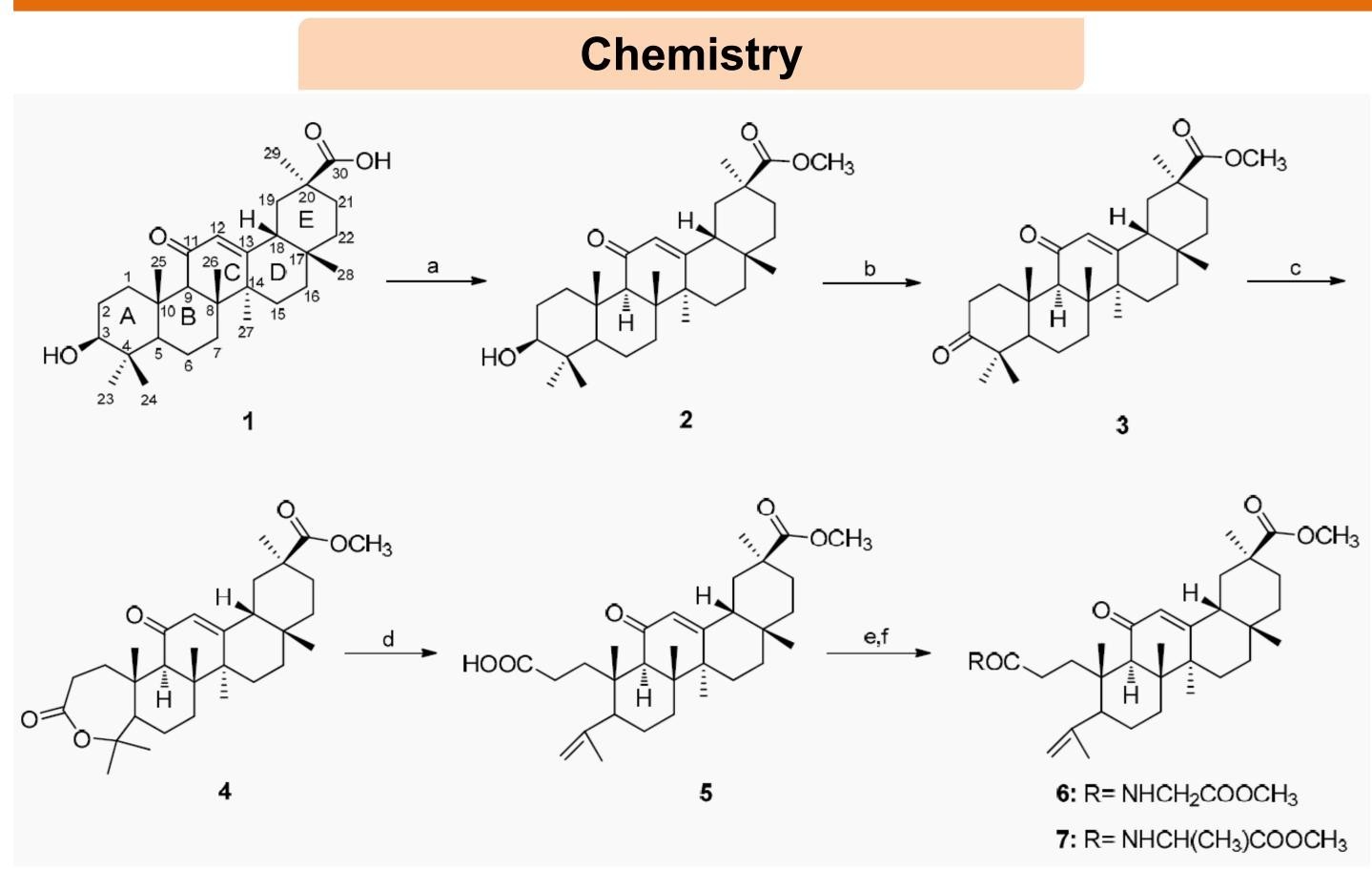

Novel A-ring cleaved glycyrrhetinic acid derivatives: Synthesis and evaluation of antiproliferative activity

Pedro J.M. Sobral^{a,b}, Rita Oliveira^{a,b}, Sara Moura^{a,b}, Daniela P.S. Alho^{a,b}, Marta Cascante^{c,d}, Silvia Marin^{c,d} and Jorge A.R. Salvador^{a,b}

^a Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal. ^b Center for Neuroscience and Cell Biology, 3000-504 Coimbra, Portugal. ^c Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain. ^d Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain

INTRODUCTION

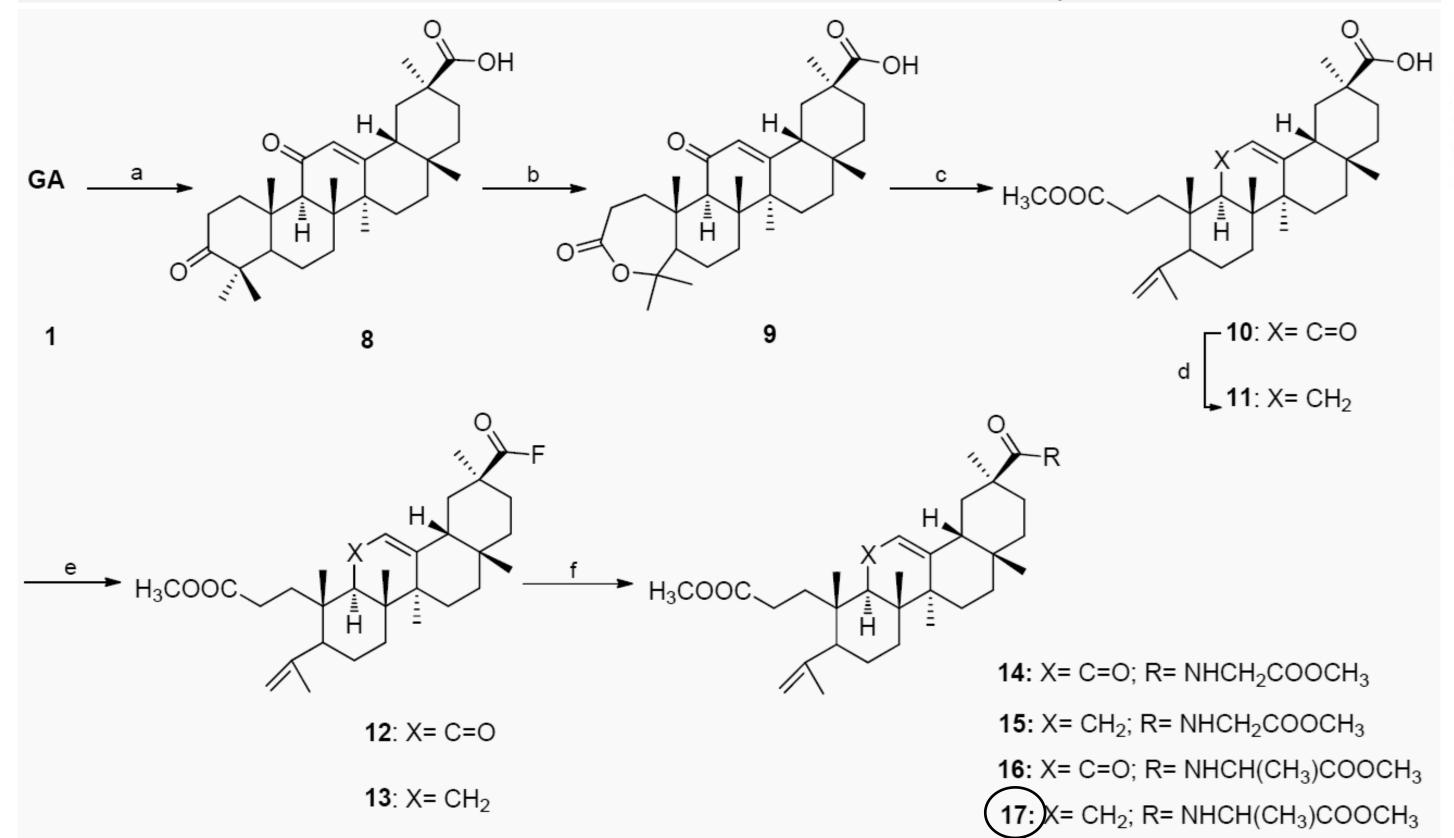


Glycyrrhetinic acid (GA) is the hydrolyzed metabolite of glycyrrhizin, a major pentacyclic triterpenoid saponin obtained from the roots of licorice, that has been shown to inhibit tumor initiation and proliferation in several cancer cell lines^{1,2}. Nevertheless, it lacks potency and selectivity as an antitumor agent³. Many derivatizations have been performed in order to enhance its potency, but the cleavage of the ring A is still poorly explored. On the other hand, is well known that the conjugation of an amino acid moiety to pentacyclic triterpenoids improves their cytotoxicity and their selectivity towards tumour cells.

Objective

Synthesis of a library of novel GA derivatives via the opening of its ring A along with the coupling with an amino acid and evaluation of their antiproliferative activity against human cancer cell lines, as well as against a non-tumour cell line (BJ). Additionally, we also pretend to elucidate the preliminary mechanisms of action of the most active compounds.

METHODS AND RESULTS



Antiproliferative Activity

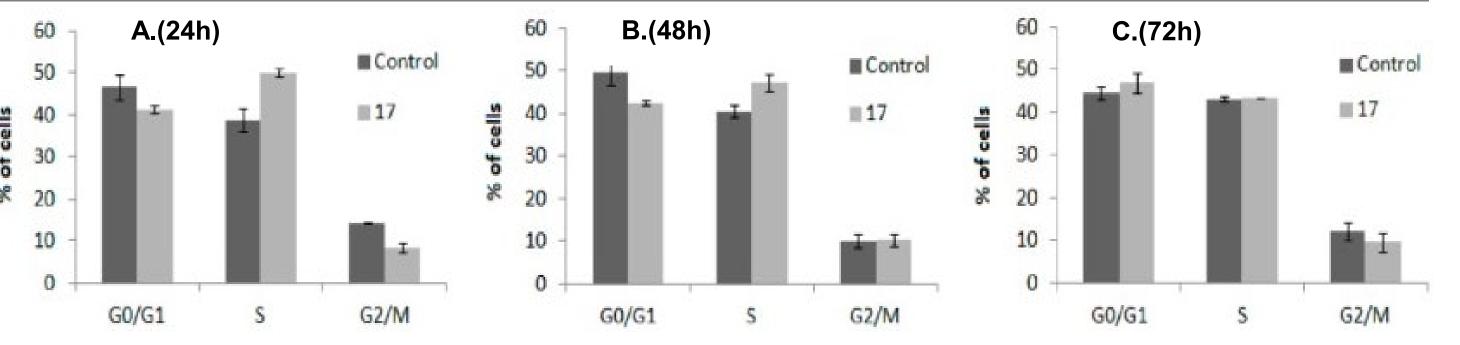
Biology

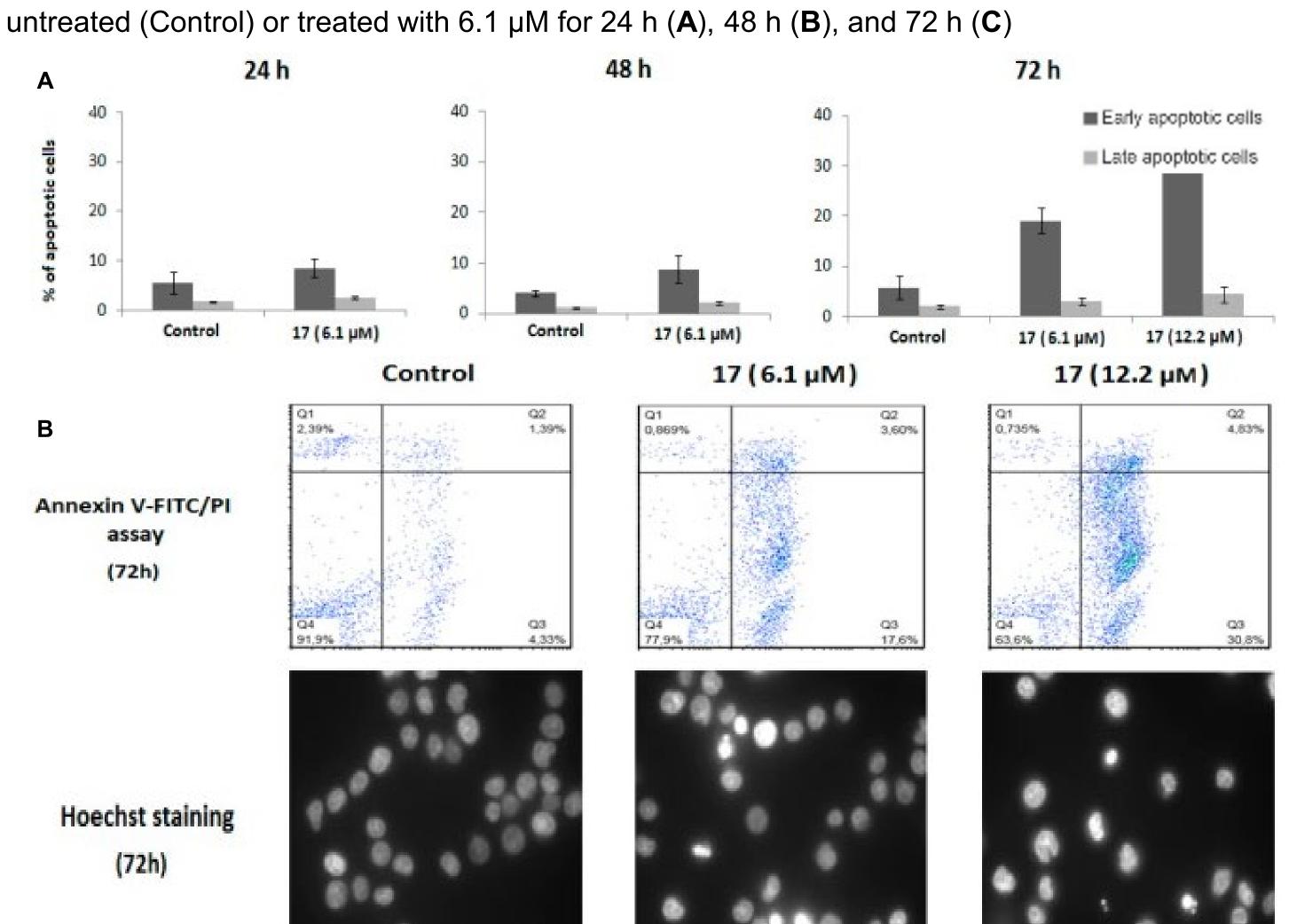
Table 1. Antiproliferative activities of GA **1**, its derivatives **14-17**, and cisplatin against several cancer cell lines and the human nontumoral BJ cell line

Scheme 1. Reagents and conditions: a) CH_3I , K_2CO_3 , DMF, r.t.; b) Jones reagent, acetone, 0 °C; c) *m*-CPBA, CH_2CI_2 , r.t.; d) *p*-TSA, CH_2CI_2 , r.t.; e) Deoxo-Fluor®, CH_2CI_2 , r.t.; f) glycine methyl ester hydrochloride or L-alanine methyl ester hydrochloride, Et_3N , CH_2CI_2 , r.t.

Compound	Cell line (IC ₅₀ , μM)							
	Jurkat	MOLT-4	MIAPaca2	MCF7	HeLa	A375	HepG2	BJ
1	105.6 ± 5.0	95.5 ± 3.9	101.6 ± 1.6	97.8 ± 3.9	107.2 ± 2.5	112.2 ± 2.6	125.1 ± 9.1	165.0 ± 7.1
14	13.3 ± 1.1	23.5 ± 0.8	32.5 ± 3.2	28.8 ± 0.7	34.2 ± 2.4	30.0 ± 2.2	34.7 ± 1.1	N.D.
15	12.5 ± 0.5	18.9 ± 1.6	20.2 ± 1.2	24.8 ± 1.3	22.2 ± 0.3	18.8 ± 1.1	25.4 ± 1.3	N.D.
16	9.6 ± 0.4	19.1 ± 1.3	22.6 ± 0.6	23.8 ± 1.6	19.1 ± 0.5	17.0 ± 1.1	25.7 ± 0.8	N.D.
17	6.1 ± 0.2	15.3 ± 0.7	11.8 ± 1.1	21.6 ± 0.6	13.0 ± 0.5	11.3 ± 0.4	16.0 ± 0.3	> 100
Cisplatin	1.9	1.4	5.0 ± 1.0	19.1 ± 4.5	2.3 ± 0.3	3.1 ± 1.0	2.9	10.1 ± 2.0

Analysis of Cell Cycle Distribution and Apoptosis (compound 17)




Figure 1. Effect of compound 17 on cell cycle distribution. Cell cycle analysis of Jurkat cells

Scheme 2. Reagents and conditions: a) Jones reagent, acetone, 0 °C; b) *m*-CPBA, CH_2CI_2 , r.t.; c) MeOH, *p*-TSA, CH_2CI_2 , r.t.; d) zinc dust, conc. HCI, dioxane, r.t.; e) Deoxo-Fluor®, CH_2CI_2 , r.t.; f) glycine methyl ester hydrochloride or L-alanine methyl ester hydrochloride, Et_3N , CH_2CI_2 , r.t.

CONCLUSIONS

We synthesized a series of new **GA** derivatives via the opening of its ring A along with the coupling of an amino acid. Antiproliferative activity assays in a panel of nine human cancer cell lines showed that the most potent compound **17** was 5 to 17-fold more active than **GA 1**. The study of selectivity revealed that this new derivative was up to 10 times more selective towards malignant cells than its parental compound. Preliminary mechanism investigation indicated that compound **17** may act through arresting cell cycle progression at the S phase and inducing apoptosis⁴.

ACKNOWLEDGEMENTS

Figure 2. Induction of apoptosis by compound **17**. (**A**) Flow cytometry quantification of apoptosis in Jurkat cells untreated (Control) or treated with compound **17** at specified concentrations for 24, 48 and 72h. (**B**) *Upper panel*: Representative dot plots of Annexin V-FITC/PI assays of Jurkat cells untreated (Control) or treated with compound **17** at specified concentrations for 72 h. *Lower panel*: Representative fluorescence microscopic images of Jurkat cells untreated with compound **17** at specified concentrations for 72 h. *Lower panel*: Representative fluorescence microscopic images of Jurkat cells untreated with compound **17** at specified concentrations for 72 h.

PJMS and DPSA thanks FCT through project PTDC/QEQ-MED/7042/2014, Projecto Estratégico: UID/NEU/04539/2013 and the financial support for the PhD grant SFRH/BD/66020/2009; JARS and DPSA thanks PT2020, project n° 3269, drugs2CAD, and the financial support by FEDER through the COMPETE 2020 Programme. JARS also wishes to thank UC for financial support; MC and SM thank MINECO-European Commission FEDER—Una manera de hacer Europa (SAF2017-89673-R) and AGAUR—Generalitat de Catalunya (2017SGR1033) and the support received through the prize "ICREA Academia", funded by ICREA Foundation—Generalitat de Catalunya; The authors acknowledge UC-NMR facility, which is supported by FEDER and FCT funds through the grants REEQ/481/QUI/2006, RECI/QEQ-FI/0168/2012, and CENTRO-07-CT62-FEDER-002012, and RNRMN for NMR data.

REFERENCES

1. H. Hussain, I. Ali, D. Wang, F.L. Hakkim, B. Westermann, I. Ahmed, A.M. Ashour, A. Khan, A. Hussain, I.R. Green, S.T. Ali Shah, Expert Opinion on Drug Discovery, 2021; doi: 10.1080/17460441.2021.1956901;

2. D.H. Cao, J. Jiang; D. Zhao, M.H. Wu, H.J. Zhang, T.Y. Zhou, T. Tsukamoto, M. Oshima, Q. Wang, X.Y. Cao, Eur. J. Inflamm. 2018, 16, 7;

3. R. Wang, Y. Li, X.D. Huai, Q.X. Zheng, W. Wang, H.J. Li, Q.Y. Huai, Drug Des. Dev. Ther. 2018, 12, 1321–1336;

4. D.P.S. Alho, J.A.R. Salvador, M. Castante, S. Marin, Molecules, 2019, 24, 2938.

The 7th International Electronic Conference on Medicinal Chemistry 01–30 NOVEMBER 2021 ONLINE