Synthesis of human carbonic anhydrase inhibitors with structure of 4-substituted pyridine-3-sulfonamide

Krzysztof Szafrański^a, Jarosław Sławiński^a, Anna Kawiak^b

^a Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland

^b Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, ul. Abrahama 58, 80-307 Gdańsk

e-mail: krzysztof.szafranski@gumed.edu.pl

Carbonic Anhydrase (hCA) [1]

- A metalloenzyme that catalyses the hydration of carbon dioxide.
- 15 isoforms specific for different tissues.
- Main role: breathing and maintaining acid-base equlibrum.
- Non-selective inhibitors diuretics and anti-glaucoma drugs.

Isoform IX (hCAIX)

- Not very common in healthy tissues but highly expressed in tumor tissues.
- Associated with tumor hypoxia = increasing of expansion, malignancy progression, resistance to therapy.
- hCAIX inhibition = increased effectiveness of chemotherapy, reduction of tumor metastasis.
- Need for high selectivity for hCAIX over common isoforms (mainly hCAII).

Synthesis:

Planed compounds **3-29** were synthesized starting from 4-chloropyridine-3-sulfonamide (**1**) by introducion of an azide (**2**) or alkyne (**13**, **14**) moiety in the position 4. Next, using the Cu(I) catalyzed azide-alkyne cycloaddition reaction (CuAAC Huisgen reaction), compounds **3-12** and **15-28**, containing a 1,2,3-triazole ring in the position 4 of the pyridine scaffold, were obtained. The structure of the new compounds was confirmed using spectroscopic methods: IR, ¹H NMR, and elemental analysis (C, H, N).

Our previous CA inhibitors [2-5]

Docking studies:

Using the Molecular Operating Environment (MOE 2019.01) software the structures of the obtained compounds were docked to tumor-associated isozyme IX (PDB 5FL4) and ubiquitous isozyme II (PDB: 5DRS) of human carbonic anhydrase. The binding energy of individual compounds is in the range of 7.4-8.3 kcal / mol for isozyme IX and 5.2-8.3 kcal / mol for isozyme II. Only 3 compounds (**12**, **21**, **22**) show a higher affinity for hCAII (difference 0.2-0.1 kcal / mol), while the remaining ones show higher interaction energy with isozyme IX (difference 0.1-2.6 kcal / mol).

The zinc cation and His68, Leu91, Gln 92, His 94, Val 121, Val 130 and Thr 200 are responsible for the interaction of the compounds with the hCAIX active site.

ADME calculation:

Pharmacokinetic properties and ADME parameters were determined using the SwissAdme tool (Swiss Institute of Bioinformatics.)

Arrangement of the compound **27** in the hCAIX active center (S = -8.06 kcal / mol)

Cytotoxicity:

 R^2

Compounds **7**, **8**, **18**, **22** and **24** were tested for cytostatic activity against 3 human cancer cell lines: breast cancer (MCF-7), colon cancer (HCT-116) and cervical cancer (HeLa) using the MTT test. The tested compounds showed high values of the IC_{50} parameter (IC_{50} > 120 µM), which proves the weak in vitro antitumor properties not related to the inhibition of carbonic anhydrase.

- All compounds meets Lipiński's rules, and the vast majority also meet the rules of Veber and Ghose.
- They show good or moderate solubility.
- No penetration of the blood-brain barrier.
- Predominantly high gastrointestinal absorption with the exception of derivatives containing a thiomethylene linker (X = S) (16, 18, 20, 22, 26 and 28).
- Lack of inhibition of cytochrome P450 (CYP) enzymes.

Literature:

[1] J. Y. Winum, et all. (2009) *Anti-cancerAgents in Med. Chem.* 9, 693-702
[2] Z. Brzozowski, J. Sławiński et all. (2010). *Eur. J. Med. Chem.* 45, 3656–3661.
[3] Z. Brzozowski, J. Sławiński, et all. (2010). *Eur. J. Med. Chem.* 45 2396–2404.
[4] Z. Brzozowski, J. Sławiński, et all. (2011). *Eur. J. Med. Chem.* 46 4403–4410.
[5] Z. Brzozowski, J. Sławiński et all. (2012). *Eur. J. Med. Chem.* 56 282–291.
[6] J. Sławiński, K. Szafrański et all. (2013). *Eur. J. Med. Chem.* 69 701–710.

