New ruthenium-cyclopentadienyl agents as a new strategy to fight colorectal cancer

Ana Rita Brás¹,²,³, Pedro Fernandes¹,², Tiago Moreira, Andreia Valente³*, Ana Preto¹,²*

¹CBMA – Centre of Molecular and Environmental Biology, University of Minho, Braga, Portugal
²IBS - Institute of Science and Innovation for Bio-Sustainability, University of Minho, Braga, Portugal
³CQE – Centro de Química Estrutural, Faculty of Sciences of University of Lisbon, Lisbon, Portugal

*Co-senior authorship
Corresponding author: apreto@bio.uminho.pt
New ruthenium-cyclopentadienyl agents as a new strategy to fight colorectal cancer

Graphical Abstract

CRC cells

Cytotoxicity

Proliferation

Apoptosis

Actin alterations
Abstract

Colorectal cancer (CRC) is one of the most lethal cancers worldwide, however it has limited chemotherapeutic agents available. CRC harboring KRAS and BRAF mutations are correlated with resistance to EGFR inhibitors what constitutes a relevant clinical problem. Ruthenium (Ru) drugs had arisen as one of the most promising metallodrugs with features that increase their specificity and selectivity toward cancer cells.

Recently, a new family of Ru-cyclopentadienyl conjugates was designed using macromolecules and/or biomolecules. Here, we aimed to study the effect of these new Ru conjugates in CRC cells in order to study the potential increase in selectivity and efficiency in CRC cells. In this work, we used two CRC-derived cell lines with KRAS and BRAF mutations and a normal colon cell line to study cellular cytotoxicity, antiproliferative activity, cell death mechanism, intracellular distribution, MAPK-ERK and PI3K-AKT signaling pathways and actin cytoskeleton effects of the compounds.

Our results revealed that Ru agents are more cytotoxic for CRC cells, induce cell cycle arrest, decrease the ability of cells to proliferate, induce apoptosis and preferentially localize in membrane and cytoskeleton of CRC cells. Ru agents also affect F-actin polymerization and MAPK-ERK and PI3K-AKT signaling pathways.

Overall, our results showed that Ru compounds present promising anticancer activity in CRC cells, mainly in KRAS mutated cell lines, what could bring new avenues in CRC therapy.

Keywords: Colorectal cancer; KRAS; BRAF; Ruthenium agents
Introduction

Colorectal cancer

- Colorectal cancer is the 3rd type of cancer most incident.
- Colorectal cancer is the 2nd leading cause of cancer death.

Figure 1. Number of global deaths of CRC in GLOBOCAN 2020. Adapted from: Sung et al., 2021.
Introduction

Colorectal cancer carcinogenesis

KRAS
40%

BRAF
15%

PIK3CA
20%

Figure 2. CRC carcinogenesis. Adapted from: Kuipers, 2015
Introduction

Colorectal cancer therapy

Surgery

Chemotherapy

5-Fluorouracil

Targeted therapies

The most widely used chemotherapy agent to treat CRC

- **Success rate as low** as 10-15%
- **Severe side effects and resistance**

Target growth factor pathways in CRC - EGFR inhibitors

- CRC with KRAS, BRAF and PIK3CA mutations do **not respond to EGFR inhibitors**
Clinical relevant problem that needs to be overcome!

- The most widely used chemotherapy agent to treat CRC
 - Success rate as low as 10-15%
 - Severe side effects and resistance
- Target growth factor pathways in CRC- EGFR inhibitors
 - CRC with KRAS, BRAF and PIK3CA mutations do not respond to EGFR inhibitors
Introduction

Ruthenium drugs

- Low toxicity
- Potential to overcome platinum-resistance
- Activation-by-reduction
- Low ligand-exchange rate

Figure 3. “Activation-by-reduction” mechanism of ruthenium(III) complexes. Adapted from: Antonarakis & Emadi, 2010
Introduction

New ruthenium-cyclopentadienyl agents

Compound 1

![Compound 1 diagram](image1)

Compound 2

![Compound 2 diagram](image2)

Compound 3

![Compound 3 diagram](image3)

Legend:

- Cytotoxic core
- Biodegradable polymer chain
- Biotin molecule

Figure 4. Enhanced permeability and retention effect. Adapted from: Blunden & Stenzel, 2015

Figure 5. Biotin receptor (Sodium dependent multivitamin transporter) overexpression in cancer cells.
Aim

Study the anticancer effect of new Ru-cyclopentadienyl agents for colorectal cancer therapy

Two CRC-derived cell lines

- SW480 (KRAS)
- RKO (BRAF)

“Normal” colon-derived cell line

NCM460

Specific aims:

- What is the effect of ruthenium compounds in colorectal cancer cells survival?
- Which is the mechanism of action and molecular targets of these compounds?
Results and discussion

1. Ru agents are more cytotoxic and selective to CRC cells

Table 1. Determination of the IC$_{50}$ values of Ru agents by Sulforhodamine B.

<table>
<thead>
<tr>
<th>Compound</th>
<th>SW480KRAS (μM)</th>
<th>RKOBRAF (μM)</th>
<th>NCM460 (μM)</th>
<th>Selectivity Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6,0</td>
<td>4,0</td>
<td>15,0</td>
<td>2,5</td>
</tr>
<tr>
<td>2</td>
<td>14,1</td>
<td>7,7</td>
<td>57,2</td>
<td>4,1</td>
</tr>
<tr>
<td>3</td>
<td>1,8</td>
<td>2,8</td>
<td>4,3</td>
<td>2,4</td>
</tr>
</tbody>
</table>

The 7th International Electronic Conference on Medicinal Chemistry
01–30 NOVEMBER 2021 | ONLINE
Results and discussion

2. Ru agents decrease the colonogenic ability of CRC cells

Figure 6. Representative images and graphics of colony formation ability of RKO cells.
Results and discussion

3. Ru agents decrease the proliferation of CRC cells

Figure 7. Graphical representation of proliferation analysis using carboxyfluorescein succinimidyl ester by flow cytometry.
Results and discussion

4. Ru agents induce cell cycle arrest in CRC cells

Figure 8. Graphical representation of cell cycle analysis using propidium iodide in CRC cells.
Results and discussion

5. Ru agents induce apoptosis in CRC cells

Figure 9. Graphical representation of annexin V/propidium iodide results in CRC cells.
Results and discussion

6. Ru agents are located at the cytoskeleton and membrane of CRC cells

Figure 10. Graphical representation of cellular distribution of Ru agents in RKO and SW480 cells.
Results and discussion

7. Ru agents affect the actin cytoskeleton of CRC cells

Figure 11. Analysis of F-actin staining in CRC cells. Representative images (×600) of DAPI, Phalloidin-AlexaFluor® 568 were obtained by confocal microscopy.
Conclusions

- Ru agents show **cytotoxicity** and **selectivity** towards CRC cells;
- Ru agents **decrease proliferation** and **induce apoptosis**;
- Ru agents **preferentially localize in membrane and cytoskeleton** in CRC cells;
- Ru agents also **affect F-actin polymerization**.

Ru agents showed promising anticancer activity in CRC cells.
Acknowledgments

SFRH/BD/139271/2018 attributed to Ana Rita Brás
CEECCIND/01974/2017 attributed to Andreia Valente
PTDC/QUIQIN/28662/2017

The 7th International Electronic Conference on Medicinal Chemistry
01–30 November 2021 | Online