

Chalcones versus 2-styrylchromones: which are the best oxygen and nitrogen reactive species scavengers?

Ricardo Monteiro^{1,2}, Mariana Lucas¹, Marisa Freitas¹, Catarina M. Correia³, Vera L.M. Silva³, Artur M.S. Silva³, Eduarda Fernandes¹, Daniela Ribeiro^{1,4}*

- ¹ LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
- ² Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal.
- ³ LAQV, REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
- ⁴ Faculty of Agrarian Sciences and Environment, University of the Azores, 9700-042 Angra do Heroísmo, Açores, Portugal.
- * daniela.sa.Ribeiro@uac.pt

Introduction

During the inflammatory process a state of oxidative stress can arise, characterized by an imbalance between the production of prooxidant reactive species [e.g. hydrogen] peroxide (H_2O_2) , superoxide anion radical $(O_2^{\bullet-})$ and nitric oxide radical (NO), by inflammatory cells, and an incapacity of the body's antioxidant defence systems to counteract these reactive species' products. This condition often results in increased tissue damage and development of chronic diseases (e.g. rheumatoid arthritis and atherosclerosis) [1]. 2-Styrylchromones (2-SC) and chalcones are two classes of naturally occurring chromones, showing several biological activities (e.g. antiviral and antiinflammatory) with potential therapeutic application, and with interesting scaffolds for drug design [2,3]. However, as far as we know, their antioxidant potential has never been compared using the same *in vitro* methodologies.

Aim

The aim of this study was to evaluate the potential antioxidant activity of seven structurally related hydroxylated 2-SC (Fig. 1A) and chalcones (Fig. 1B) through the scavenging of physiological relevant reactive oxygen (H_2O_2 and $O_2^{\bullet-}$) and nitrogen ($^{\bullet}NO$) species, using non-cellular in vitro systems, and to establish a structure-activity relationship.

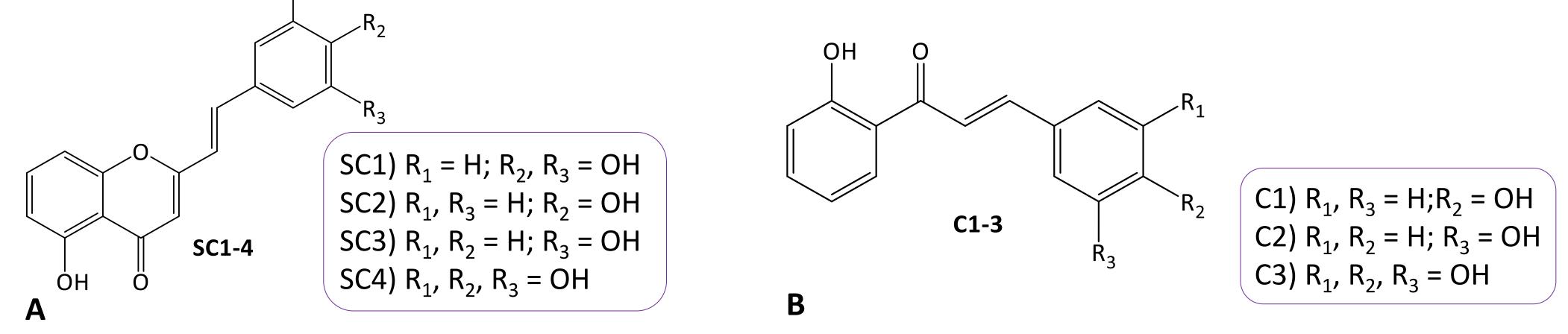
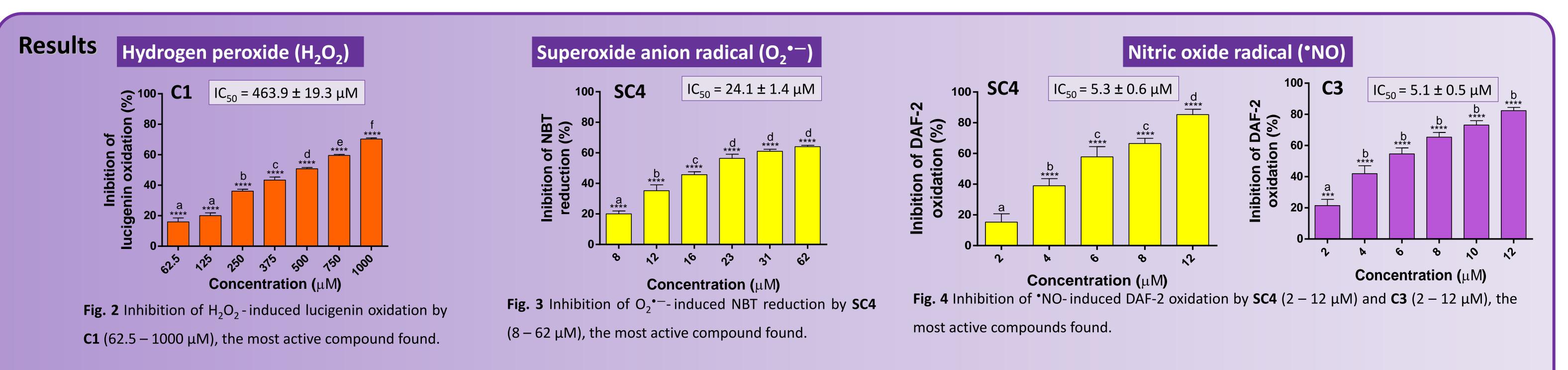



Fig. 1 Chemical structures of the studied 2-SC (A) and chalcones (B).

DAF-2T – DAF-2's oxidation product

Results are expressed as the mean \pm standard error of the mean (SEM). **** $p \le 0.0001$, compared with the control (without prooxidant reactive species). Letters above the bars indicate either statistically similar data, if letters are the same (p > 0.05), or statistically different data, if letters are diferent (p > 0.05).

Conclusions

The 2-SC SC4 was the only one able to scavenge more than one reactive specie, $O_2^{\bullet-}$ and $\bullet NO_2^{\bullet-}$

References

[1] Ribeiro, D. et al. Medicinal Research Reviews 2015, 35 (5), 877-936. [2] Santos, C. M. M. et al. European Journal of Organic Chemistry 2017, 2017 (22), 3115-3133.

The chalcone C1 demonstrated some selectivity as it scavenged H_2O_2 , but not $O_2^{\bullet-}$ or $\bullet NO_2^{\bullet-}$

The presence of hydroxy groups on the B-ring seems to contribute to this activity, in both 2-SC and

chalcones scaffolds, namely at C3', C4' and C5'

Overall, chalcones seemed to be slightly more active than 2-SC

[3] Zhuang, C. et al. Chemical Reviews 2017, 117 (12), 7762-7810. [4] Gomes, A. et al. Bioorganic & Medicinal Chemistry 2007, 15 (18), 6027-36.

Acknowledgements

The work was supported by PT national funds (FCT/MCTES, Fundação para a Ciência e Tecnologia and Ministério da Ciência, Tecnologia e Ensino Superior) through grant UIDB/50006/2020 (LAQV-REQUIMTE Associate Laboratory) and from the European Union (FEDER funds through COMPETE POCI-01-0145-FEDER-029253). Mariana Lucas thanks FCT and ESF (European Social Fund) through Programa Operacional Regional do Norte (NORTE 2020) for her PhD grant (2021.06746.BD). Marisa Freitas further acknowledges her contract under the Scientific Employment Stimulus - Individual Call (CEEC Individual) 2020.04126.CEECIND/CP1596/CT0006.

The 7th International Electronic Conference on Medicinal Chemistry 01–30 NOVEMBER 2021 ONLINE