Propolis and its bioactive chemical constituents offer a novel and sustainable treatment option for kinetoplastid infections

¹Godwin U. Ebiloma, ²John O. Igoli, ³David G. Watson, ⁴Harry P. De Koning

¹School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK.
 ²Phytochemistry Research Group, Department of Chemistry, University of Agriculture, Makurdi 2373, Nigeria
 ³Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G1 1XQ, UK.
 ⁴Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.

The kinetoplastids are a group of protozoan parasites characterized by the presence of a unique organelle, called the kinetoplast, that is located inside a single mitochondrion and contains a large amount of DNA called kinetoplast DNA (kDNA). Kinetoplastids of medical and veterinary significance include *Trypanosoma* spp. (the etiological agents of human and animal African Trypanosomiasis, surra, dourine and Chagas disease), and Leishmania spp. (the causative agents of the various forms of leishmaniasis). Millions of people, and their domesticated animals, living in endemic regions across the globe are at risk of these Neglected Tropical Diseases. All of the human and veterinary conditions can be disabling or fatal if not adequately treated, and no vaccines are available. However, drug treatment is hampered by the challenges of drug resistance and toxicity to the mostly very old drugs. We have been investigating propolis (a natural product made by bees from tree resins), and compounds isolated from it, as novel agents against *Trypanosoma* and *Leishmania* species. Our results show that high levels of activity were obtained for all the samples with the levels of activity varying across the sample set. The highest levels of activity were found against *L. mexicana*. Propolis have no *in vitro* growth inhibition against mammalian cells (result not shown), but displayed low EC₅₀ against *Trypanosoma* and *Leishmania* species, without a loss of activity against diamidine- and arsenical-resistant or phenanthridine-resistant *T. brucei* strains, or a miltefosine-resistant *L. mexicana* strain. These results provide sufficient scope for further investigations of propolis-derived natural compounds toward the rational development of sustainable drugs against these kinetoplastids.

Method

NATIONAL

HORIZONS

CENTRE

- Resazurin assay was used to determine the susceptibilities of various kinetoplastids to propolis extracts
- Extracts of 35 propolis samples from various parts of Europe were tested against wild type and resistant strains of the protozoal pathogens *Trypanosoma brucei*, *Trypanosoma congolense* and *Leishmania mexican*a.
- The extracts were also tested against Crithidia fasciculata a close relative of Crithidia mellifcae, a parasite of bees. Crithidia, Trypanosoma and Leishmania are all members of the order Kinetoplastida.
- The propolis samples were profled by using liquid chromatography with high resolution mass spectrometry (LC-MS) and principal components analysis (PCA) of the data was done to show (if any) variation in the composition of the propolis samples.

	T. brucei				T. congolense	
Propolis sample	427WT EC ₅₀	B48 EC ₅₀	R.I.	P value	IL3000 EC ₅₀	
Suffolk 4, UK	7.42 ± 0.37	5.7±0.17	0.77	0.013	8.46 ± 1.47	
Bulgaria 1	5.20 ± 0.18	3.6±0.52	0.69	0.043	3.69 ± 0.79	
Suffolk 2, UK	6.69±0.36	7.7 ± 1.1	1.15	0.423	5.66 ± 1.55	
North Yorkshire 1, UK	13.5 ± 0.61	11.0 ± 0.70	0.82	0.058	18.9 ± 1.1	
Northamptonshire 1, UK	4.49±0.22	3.0±0.20	0.67	0.007	5.69 ± 1.10	
Essex 1, UK	5.97±0.17	4.6±0.26	0.77	0.013	4.40 ± 0.47	
Essex 2, UK	14.0 ± 0.13	10.6 ± 1.6	0.75	0.102	17.3 ± 2.4	
Norfolk 1, UK	5.23 ± 0.49	3.3 ± 0.31	0.63	0.029	3.08 ± 0.90	
Devon 1, UK	8.57±0.26	10.8 ± 1.2	1.26	0.144	11.4 ± 1.8	
Leicestershire 1, UK	13.7±1.18	11.6±2.3	0.85	0.448	15.3 ± 3.0	
Leicestershire 2, UK	17.8±2.16	22.1 ± 1.4	1.24	0.169	27.6±5.3	
Derbyshire, UK	11.8±0.57	9.5±1.49	0.81	0.228	26.4 ± 4.5	
Lithuania 1	18.4±1.30	22.1±0.24	1.20	0.049	30.9±2.8	
Lithuania 2	16.1±0.93	25.0 ± 1.0	1.56	0.003	23.4 ± 1.4	
Suffolk 1, UK	6.82±0.87	4.5±0.23	0.66	0.058	5.12 ± 0.68	
Suffolk 3, UK	4.37 ± 0.18	2.9 ± 0.15	0.66	0.003	3.26 ± 1.03	
Bulgaria 2	5.80 ± 0.36	4.1 ± 0.41	0.71	0.036	2.06 ± 1.12	
Bulgaria 3	6.28±0.69	5.3 ± 0.14	0.84	0.249	1.96 ± 1.01	
Cambridgeshire 1, UK	9.79±0.37	8.2±0.32	0.84	0.034	5.65 ± 1.95	
Norfolk 2, UK	6.18±0.27	4.2 ± 0.41	0.68	0.015	2.13 ± 0.38	
Northamptonshire 2, UK	5.24 ± 0.42	3.4±0.39	0.65	0.030	4.83 ± 1.67	
Cambridgeshire 2, UK	12.7±0.09	10.3 ± 1.22	0.81	0.116	7.78 ± 2.15	
North Yorkshire 2, UK	18.5 ± 0.48	14.9 ± 0.31	0.81	0.003	16.5 ± 3.1	
Northern Ireland, UK	6.30 ± 0.33	6.7±0.34	1.06	0.476	15.2 ± 4.2	
North Yorkshire 3, UK	6.97±0.60	5.4±0.72	0.77	0.174	4.90 ± 1.53	
North Yorkshire 4, UK	6.79±0.45	4.7±0.31	0.69	0.019	4.99 ± 2.06	
North Yorkshire 5, UK	10.0 ± 0.06	9.0±1.3	0.90	0.477	7.41 ± 1.25	
North Yorkshire 6, UK	8.75 ± 0.34	7.3 ± 0.41	0.83	0.055	13.6±3.1	
Essex 3, UK	6.86±0.71	5.4±0.18	0.79	0.122	35.7±6.5	
Berkshire, UK	6.23±0.12	4.2±0.30	0.67	0.003	4.07 ± 1.10	
Midlands, UK	5.28 ± 0.51	4.7±0.31	0.89	0.395	6.12 ± 1.82	
Devon 2, UK	8.68±0.43	5.6±0.23	0.65	0.003	7.52 ± 1.62	
Buckinghamshire, UK	17.4±0.96	13.1±1.5	0.75	0.071	28.4 ± 6.0	
Norfolk 3, UK	3.67±0.30	2.5±0.14	0.68	0.028	3.47 ± 0.92	
Norfolk 4, UK	4.19±0.21	2.9±0.04	0.69	0.004	3.60±0.99	
Pentamidine (µM)	0.0027±3.90E-04	0.6±0.01	222	< 0.0001	N.D.	
Diminazene (µM)	N.D.	N.D.			0.37 ± 0.12	

Results

Propolis	C. fasciculate EC ₅₀ AVG ± SEM	Ratio EC ₅₀ (Tbb)/ EC ₅₀ (Cf)	P value	
Suffolk 4, UK	6.41 ± 0.22	1.16	0.0798	
Bulgaria 1	3.78 ± 0.65	1.37	0.1048	
Suffolk 2, UK	2.80 ± 0.47	2.39	0.0029	
North Yorkshire 1, UK	8.56 ± 1.19	1.57	0.0215	
Northamptonshire 1, UK	3.54 ± 0.20	1.27	0.0324	
Essex 1, UK	2.72 ± 0.23	2.20	0.0004	
Essex 2, UK	13.4 ± 0.94	1.05	0.5182	
Norfolk 1, UK	3.05 ± 0.48	1.71	0.0340	
Devon 1, UK	8.11±1.43	1.06	0.7664	
Leicestershire 1, UK	9.58±0.25	1.43	0.0269	
Leicestershire 2, UK	23.8±1.85	0.75	0.1030	
Derbyshire, UK	5.64 ± 0.68	2.09	0.0022	
Lithuania 1	5.92±0.03	3.10	0.0007	
Lithuania 2	10.1 ± 1.56	1.59	0.0310	
Suffolk 1, UK	9.46±1.03	0.72	0.1213	
Suffolk 3, UK	7.94±0.70	0.55	0.0077	
Bulgaria 2	6.11±0.66	0.95	0.6931	
Bulgaria 3	5.55 ± 0.57	1.13	0.4633	
Cambridgeshire 1, UK	8.44±0.69	1.16	0.1597	
Norfolk 2, UK	5.64±0.93	1.10	0.6068	
Northamptonshire 2, UK	4.62 ± 0.56	1.13	0.4258	
Cambridgeshire 2, UK	22.7±1.06	0.56	0.0007	
North Yorkshire 2, UK	13.7±1.15	1.35	0.0187	
Northern Ireland, UK	11.6 ± 0.77	0.54	0.0032	
North Yorkshire 3, UK	5.04 ± 0.71	1.38	0.1062	
North Yorkshire 4, UK	2.95 ± 0.25	2.30	0.0018	
North Yorkshire 5, UK	7.46 ± 1.00	1.34	0.0647	
North Yorkshire 6, UK	3.98±0.15	2.20	0.0002	
Essex 3, UK	14.0±0.99	0.49	0.0043	
Berkshire, UK	5.56 ± 0.70	1.12	0.4015	
Midlands, UK	3.27±0.54	1.62	0.0540	
Devon 2, UK	2.58 ± 0.43	3.36	0.0006	
Buckinghamshire, UK	21.4±1.34	0.81	0.0716	
Norfolk 3, UK	4.34±0.35	0.84	0.2208	
Norfolk 4, UK	4.21±0.49	1.00	0.9715	
PAO ^a (µM)	5.35 ± 4.72	5.44	5.17	

Propolis ID	L. mexicana wild type	L. mexicana C12Rx	Resistance	ttest
	(µg/mL)	(µg/mL)	Index	
Suffolk 4, UK	1.04 ± 0.19	0.81 ± 0.15	0.78	0.40
Bulgaria 1	0.35 ± 0.03	0.29 ± 0.04	0.85	0.33
Suffolk 2, UK	0.85 ± 0.14	0.45 ± 0.03	0.53	0.048
North Yorkshire 1, UK	0.90±0.17	0.94 ± 0.15	0.96	0.87
Northamptonshire 1, UK	0.59 ± 0.05	0.28 ± 0.08	0.48	0.029
Essex 1, UK	0.62±0.07	0.37 ± 0.07	0.60	0.073
Essex 2, UK	0.89 ± 0.10	0.42 ± 0.09	0.47	0.027
Norfolk 1, UK	1.94 ± 0.44	0.61 ± 0.003	0.31	0.027
Devon 1, UK	4.97±0.23	0.95 ± 0.16	0.25	0.00014
Leicestershire 1, UK	5.67±0.43	1.33 ± 0.09	0.23	0.00058
Leicestershire 2, UK	4.71±0.33	1.06 ± 0.02	0.23	0.00041
Derbyshire, UK	1.23 ± 0.08	0.50 ± 0.17	0.41	0.016
Lithuania 1	1.51 ± 0.06	1.35 ± 0.02	0.89	0.064
Lithuania 2	0.65±0.12	1.55 ± 0.01	2.38	0.0018
Suffolk 1, UK	0.67±0.05	0.79 ± 0.09	1.17	0.32
Suffolk 3 UK	1.02 ± 0.18	0.50 ± 0.04	0.49	0.048
Bulgaria 2	1.13±0.17	0.69±0.22	0.61	0.19
Bulgaria 3	1.17±0.18	0.78 ± 0.11	0.67	0.14
Cambridgeshire 1, UK	2.38 ± 0.40	1.53 ± 0.21	0.64	0.13
Norfolk 2, UK	0.93±0.06	0.60 ± 0.05	0.65	0.020
Northamptonshire 2, UK	0.65 ± 0.05	0.49 ± 0.002	0.78	0.018
North Yorkshire 2	2.68 ± 0.15	1.36 ± 0.08	0.51	0.003
Northern Ireland	0.61 ± 0.05	0.78 ± 0.17	1.27	0.17
North Yorkshire 4, UK	0.72±0.22	0.67±0.06	0.94	0.75
North Yorkshire 5, UK	0.42 ± 0.12	0.58 ± 0.07	1.38	0.12
Miltefosine APC 12	0.1±0.03	67.0±12.6	670	< 0.001
Miltefosine APC 16	2.0±0.20	56±9.7	28	< 0.001

Table 3. The activity (μ g/ml) of propolis against wild type and miltefosine-APC12

Table 1. The activity (μ g/ml) of 35 European propolis samples against the standard drug-sensitive *T. brucei* 427WT and multi-drug resistant strain *T. brucei* B48, and *T. congolense*. Effective Concentration 50% (EC₅₀) values (μ g/ml) are given as averages and SEM of 3 independent experiments for *T. brucei* and 3–4 experiments for *T. congolense*. P value is based on a Student's unpaired t-test, comparing *T. brucei* WT and B48. R. I. is the resistance index, being the ratio of the EC₅₀ values for *T. brucei* WT and B48. N.D., not determined.

Table 2. EC50 values (µg/ml) for European propolis against *C. fasciculata* (n=3). ^aPAO=phenylarsine oxide.

resistant *L. mexicana* (C12Rx). All EC_{50} values are given as average±SEM (n=3). Statistical difference between EC_{50} values of the same sample against two strains was analysed using Student's unpaired t-test.

Figure 1. PCA plot showing the variation of propolis composition across 35 European propolis samples (Pareto scaled based on 233 components).

Fig. 2. Correlation between the EC_{50} values of propolis samples against *T. brucei* 427WT and the other parasite strains and species.

Discussion & Conclusion

- It was previously found that a parasite challenge encouraged bees to collect more propolis and that the propolis envelop improved the immunity of colonies against infection¹.
 In the current study, regional variations in the antimicrobial properties of propolis have been found to exist.
- ropolis would appear to have broad spectrum activity with individual components in the mixture having activity against different organisms.
- a good overall correlation between the effects of the various samples against each of the kinetoplastid species. Especially between *T. brucei* and *T. congolense* the correlation is very close, which is important as African animal trypanosomiasis is caused by multiple Trypanosoma species including *T. congolense*, *T. b. brucei* and, in Eastern Africa, *T. b. rhodesiense*, and the disease has now spread far beyond Africa for *T. vivax* and *T. evansi*. Even more important is that the correlation between the drug-resistant and the sensitive strains was very good, with activity against the resistant strains on average better than against the parental strains. These results gives ample scope for further investigations.

Reference: ¹Borba, R.S., Klyczek, K.K., Mogen, K.L. and Spivak, M., 2015. Seasonal benefits of a natural propolis envelope to honeybee immunity and colony health. Journal of Experimental Biology, 218(22), pp.3689-3699.

²Alotaibi, A., Ebiloma, G.U., Williams, R., Alenezi, S., Donachie, A.M., Guillaume, S., Igoli, J.O., Fearnley, J., De Koning, H.P. and Watson, D.G., 2019. European propolis is highly active against trypanosomatids including Crithidia fasciculata. Scientific reports, 9(1), pp.1-10.

The 7th International Electronic Conference on Medicinal Chemistry 01–30 NOVEMBER 2021 | ONLINE