Silicon intake reduces hypercholesterolemia facilitating reverse cholesterol transport through intestinal activation of LXR/ABC transporters pathway in type 2 diabetic rats

Marina Hernández Martín^{1,2}, Rocío Redondo Castillejo^{1,2}, Paula Ortega Menéndez¹, María Martín Bartolomé¹, Alba Martínez García², Juan Manuel Montes Gómez¹, Adrián Macho González³, Jimena Beatriz Hornedo Seijas², Alba Garcimartín¹, Aránzazu Bocanegra¹, M. Elvira López Oliva² Department of Pharmacology, Pharmacognosy and Botany. Faculty of Pharmacy. Complutense University of Madrid, 28040, Spain ² Departmental Section of Physiology. Faculty of Pharmacy. Complutense University of Madrid, 28040, Spain ³ Department of Nutrition and Food Science. Faculty of Pharmacy. Complutense University of Madrid, 28040, Spain

INTRODUCTION:

Dyslipidemia by increased intestinal cholesterol (Chol) absorption is a risk factor in type 2 Diabetes Mellitus (T2DM).

Intestinal transporters mediate Chol absorption and are an important therapeutic target to reduce hypercholesterolemia.

Silicon intake (Si) has a hypolipemic effect in experimental T2DM models.

Could silicon intake modulate Chol transporters levels in duodenum by lowering hypercholesterolemia in T2DM rats?

Intraperitoneal injection

To evaluate the hypolipemic effects

D-Si

CONCLUSIONS:

The present study demonstrates that Si consumption might facilitate the cholesterol efflux into feces through upregulating LXR, ABCG5 and ABCG8 expression in duodenum and could be a potentially therapeutic nutritional ingredient for hypercholesterolemia associated to insulin resistance in T2DM treatment.

ACKNOWLEGMENTS: This study was supported by Spanish project PID2019-103872RB-I00.

The 7th International Electronic Conference on Medicinal Chemistry 01–30 NOVEMBER 2021 ONLINE