Designing a late-stage type 2 diabetes mellitus model with brain insulin resistance and oxidative stress

Rocío Redondo-Castillejo1; Marina Hernández-Martín1,2; Luis García-García1,3; Juana Benedí1; Adrián Macho-González1; Francisco J. Sánchez-Muniz1; Sara Bastida1; Alba Garcimartín1; M. Elvira López-Oliva2; Aránzazu Bocanegra4.

2. Departmental Section of Physiology, Faculty of Pharmacy. Complutense University of Madrid. Madrid 28040. Spain.

INTRODUCTION

- The impairment in insulin-signaling pathway induces neurological damage [e.g., Alzheimer’s disease (AD)]. When AD and type 2 diabetes mellitus (T2DM) coexists, it is known as type 3 diabetes mellitus (T3DM).
- The mitochondrial dysfunction promotes oxidative stress and plays an important role in brain insulin resistance instauration, which finally leads to T3DM.

OBJECTIVE

To reveal the suitability of a late-stage T2DM rat model induced by high-saturated fat and hypercholesterolemic diet and streptozotocin-nicotinamide (STZ-NAD) injection as a T3DM model.

MATERIALS AND METHODS

- Early-stage (ES) 8 wks
- Late-stage (LS) 3 wks
- Insulin-signaling pathway
- Glucose uptake
- Antioxidant enzymes

RESULTS

- InsR β
- IRS1
- pAKTser473
- β-Actin
- GLUT3
- GLUT3

CONCLUSIONS

- The late-stage T2DM model induced by HFCD and a STZ-NAD injection represents an appropriate experimental tool to study the progression of brain insulin resistance in T3DM.
- This model could be useful to evaluate the efficacy of potential neuroprotective drugs.

ACKNOWLEDGEMENT

This study was supported by the Spanish Project PID2019-103872RB-I00.