

Development of novel aptamer-functionalized liposomes for oral cancer therapy

Jéssica Lopes-Nunes¹, Paula A. Oliveira², Carla Cruz¹

¹CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; ²Centro de Investigação e Tecnologias

Agroambientais e Biológicas (CITAB), Inov4Agro, Universidade de Trás os Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal

Methodology Introduction Conventional anticancer therapies present low specificity, leading to several secondary **Biological** Liposomes Liposomes *Pharmaceuticals* **2021**, *14*(7), 671 **Characterization Evaluation Synthesis** AS1411 is a G4 aptamer able to recognize nucleolin and is being used as an agent for anticancer drug delivery.

AS1411 derivatives have been proposed, with improved toxicity and high affinity to nucleolin.

effects.

AIM: To synthesize AS1411 derivatives-functionalized liposomes to improve the selectivity of Imiquimod and C_8 into oral cancer cells.

Figure 1. Dynamic light scattering size distribution of blank liposomes (red), AS1411functionalized liposomes (blue), AT11-functionalized liposomes (green) or AT11-B0 functionalized liposomes (black) in (A) buffer solution (PBS), (B) with C₈ or (C) with Imiquimod (IQ) encapsulated. (D) Transmission electronic microscopy images of the liposomes.

PE	PBS	1.253	$139.3 \pm 2.$	0.436	150.5 ± 0.306
	C ₈	134.9 ± 0.827	153.2 ± 1.	050 145.0 ± 0.666	$140. \pm 0.700$
	Imiquimod	136.0 ± 0.702	150.6 ± 1.4	498 144.2 ± 0.503	313.1 ± 25.53
- -					
В	PDI	Blank Liposome	AS1411 Liposomo		AT11-B0 Liposome
	PBS	0.284 ± 0.020	0.189 ± 0.0	0.357 ± 0.016	0.133 ± 0.014
	C ₈	0.173 ± 0.033	0.165 ± 0.0	0.138 ± 0.003	0.122 ± 0.024
	Imiquimod	0.134 ± 0.013	0.127 ± 0.0	0.138 ± 0.003	0.541 ± 0.095
C	% Functionalization yields		AS1411 Liposome	AT11 Liposome	AT11-B0 Liposome
	C ₈		85.83%	74.45%	79.26%
	Imiquimod		87.67%	64.43%	85.64%

Figure 2. (A) Hydrodynamic size, and (B) polydispersity index (PDI) of the different liposomes. (C) Functionalization yields of liposomes with the aptamers.

Figure 4. Confocal images of UPCI-SCC-154 cells (A) without or (B) with anti-nucleolin antibody (shown in red) incubation. Cell nuclei are stained with Hoechst 33342 (blue).

- Liposomes with sizes up to 200 nm, polydispersity index below 0.4 and functionalization yields up to 85% were obtained.
- ✓ UPCI-SCC-154 cells express nucleolin in their surface.
- ✓ Through the functionalization of liposomes with the AS1411 derivatives we expect to improve the selectivity of Imiquimod and C₈ into oral cancer cells (UPCI-SCC-154 cell line) and to decrease the toxicity in normal epithelial cells (Het-1A cell line).

The 7th International Electronic Conference on Medicinal Chemistry 01–30 NOVEMBER 2021 ONLINE