

The 7th International Electronic Conference on Medicinal Chemistry (ECMC 2021)

01-30 NOVEMBER 2021 | ONLINE

Fluoroquinolone derivatives in the treatment of mycobacterium tuberculosis infection

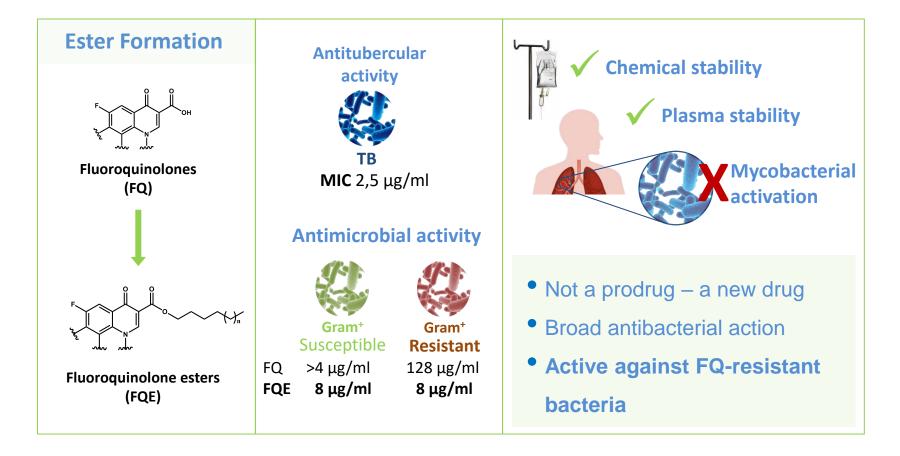
João Pais¹, Margarida Policarpo², David Pires¹, Bernard Testa³, Elsa Anesa^{1,2}, and Luís Constantino^{1,2,*}

¹ Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;

² Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;

³ University of Lausanne, 1015 Lausanne, Switzerland

* Corresponding author: constant@ff.ul.pt


iMed. ULisboa

> Research Institute for Medicines

UNIL | Université de Lausanne

Fluoroquinolone derivatives in the treatment of mycobacterium tuberculosis infection

Abstract:

Tuberculosis (TB) is currently one of the leading causes of death due to infective agents and the growing rate of multidrug-resistant tuberculosis (MDR TB) cases, is an emergent public health threat. Fluoroquinolones are commonly used in the treatment of tuberculosis for drug-sensitive patients who are intolerant to first-line antitubercular agents, as well as in the case of MDR TB. Unfortunately, these drugs have mild side effects, relevant in the prolonged treatment regimens and diminished bioavailability due to binding of metal ions. Moreover the resistance to fluoroquinolones is also on the rise, a characteristic of extensively drug resistant TB (XDR TB).

With these issues in mind, the present work focus on masking the acid moiety of fluoroquinolones, essential to the mode of action but also responsible for many of its side effects and metal chelating properties. A secondary objective was the modulation of the lipophilicity of the compounds. This was achieved by preparing esters as a prodrug of the fluoroquinolones levofloxacin and ciprofloxacin, with medium to long chain fatty alcohols.

The synthesis, stability in biological media and antibacterial activity were evaluated, the latter not only against *mycobacterium tuberculosis* but also against other clinically relevant bacterial species, since the parent compounds display a broad spectrum of activity. The biological results show a reduction in the antitubercular activity of the synthesized derivatives, probably due to deficient activation of the ester prodrug, nonetheless it was observed that the derivatives retain bioactivity against other fluoroquinolone-resistant bacteria, indicating a different mode of action.

Keywords: Esters; Fluoroquinolones; Prodrugs; Tuberculosis;

Introduction: Fluoroquinolones in the treatment of tuberculosis

hanismor

Fluoroquinolones

- Widely used antibacterial drugs Large spectrum of activity
- High potency
- X Side effects

Treatment of Tuberculosis (TB) and Multidrug-Resistant TB (MDR TB)

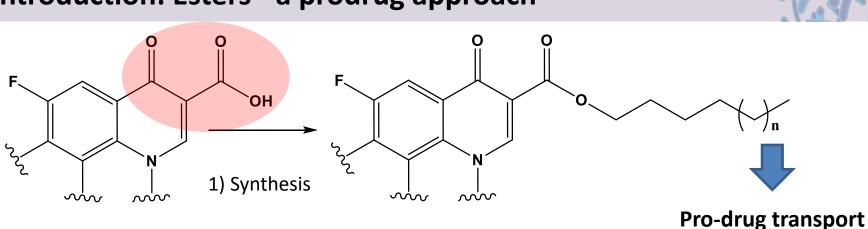
Main mechanisms of resistance in TB

X Mutations in gyrA and gyrB genes

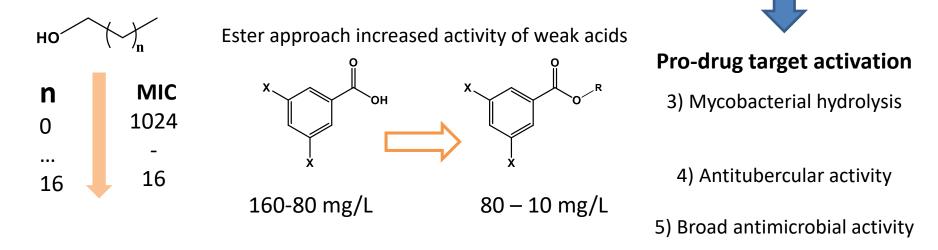
Efflux systems X

Inhibition of type II bacterial topoisomerase enzyme domains, DNA gyrase and topoisomerase IV

inhibition of DNA replication and transcription


The 7th International Electronic Conference on Medicinal Chemistry 01-30 NOVEMBER 2021 | ONLINE

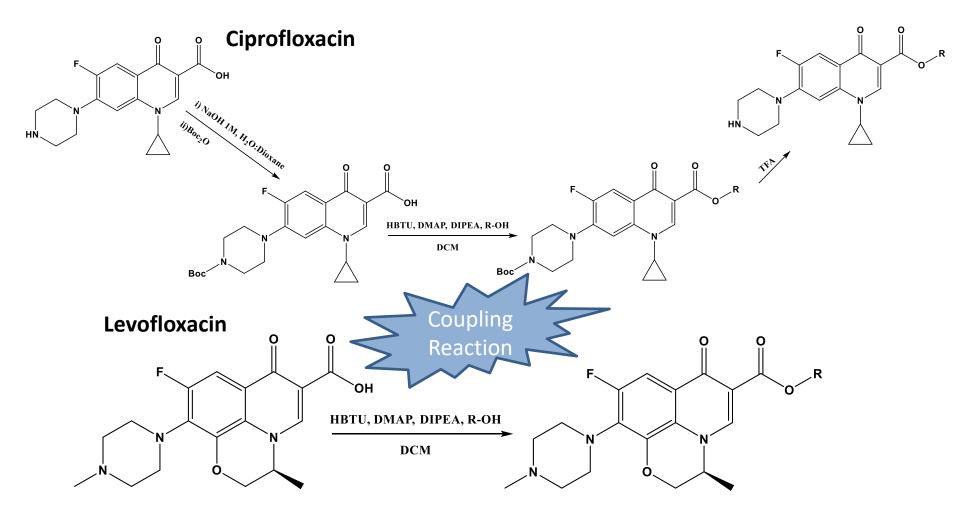
Ciprofloxacin Third-generation quinolone antibiotic


Levofloxacin

Second-generation quinolone antibiotic

Introduction: Esters - a prodrug approach

Fatty alcohols show antitubercular activity


2) Chemical and Plasmatic

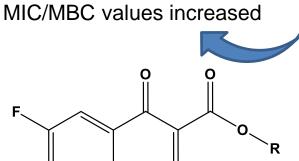
stability

Results and discussion: Synthesis

Results and discussion: Chemical and Plasmatic stability

Compounds	R	Degradation in PBS (%)	Degradation in human plasma (%)				
1	C_6H_{13}	2,96	6,90				
2	C_7H_{15}	1,42	10,82				
3	C ₈ H ₁₇	1,23	8,33				
4	C_9H_{19}	0,55	5,06				
5	$C_{10}H_{21}$	0,46	2,46				
6	$C_{11}H_{23}$	0,19	2,25				
7	$C_{12}H_{25}$	0	0,37				
8	$C_{13}H_{27}$	0	0,35				
9	$C_{14}H_{29}$	0	0,32				
10	$C_{16}H_{33}$	0	0,24				
11	C_6H_{13}	1,15	4,47				
$F \rightarrow f \rightarrow $							

Results and discussion: Mycobacterial hydrolysis and antitubercular activity


Chemically stable

Stable in plasma

Mycobacterial activation

Compounds	R	MIC (mg/L)	MBC (mg/L)	
Levofloxacin	Н	0,25	0,5	
1	C_6H_{13}	2,5	5	
2	C_7H_{15}	2,5	5	
3	C ₈ H ₁₇	2,5	5	
4	C_9H_{19}	5	10	
5	$C_{10}H_{21}$	10	20	
6	$C_{11}H_{23}$	20	40	
7	$C_{12}H_{25}$	10	40	
8	$C_{13}H_{27}$	20	160	
9	$C_{14}H_{29}$	20	40	
10	$C_{16}H_{33}$	160	>160	
Ciprofloxacin	Н	<1.25	<1.25	
11	C_6H_{13}	20	20	
Isoniazid	-	0,06	0,06	

No hydrolysis was observed against mycobacterium smegmatis homogenate

Ν

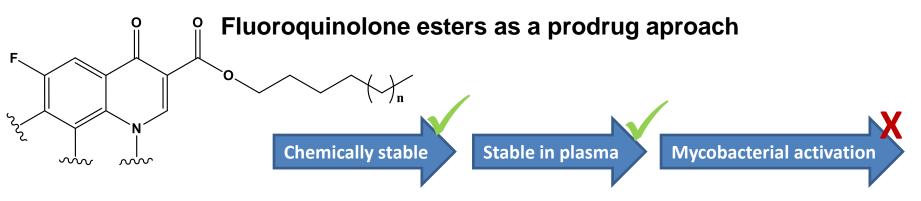
 \mathcal{M}

 $\sim \sim$

Results and discussion: Broad spectrum antimicrobial activity

		Gram-positive bacteria				Gram-negative bacteria				
		Enterococcus faecalis ATCC 11420		Enterococcus faecalis ATCC 51299		E. coli ATCC 8739		Salmonella typhimurium ATCC 13311		
Compounds	Aliphatic chain	MIC (mg/L)	MBC (mg/L)	MIC (mg/L)	MBC (mg/L)	MIC (mg/L)	MBC (mg/L)		MIC (mg/L)	MBC (mg/L)
Levofloxacin	Н	<4	8	<4	<4				<4	<4
1	C_6H_{13}	128	256	128	128	16	32		32	64
2	C_7H_{15}	128	256	64	128	32	32		32	32
3	C_8H_{17}	32	64	32	64	64	64		64	128
4	C_9H_{19}	16	8	16	16	64	64		32	128
5	$C_{10}H_{21}$	16	64	8	32	64	256		128	256
6	$C_{11}H_{23}$	32	256	16	128	128	256		128	256
7	$C_{12}H_{25}$	64	128	8	64	128	256		128	
8	$C_{13}H_{27}$	128	256	64	256	64	256		128	256
9	$C_{14}H_{29}$	128	256	64	256	256	256		128	
10	$C_{16}H_{33}$	256	256	128	256	256	256		265	
Ciprofloxacin	Н	<4	8	<4	<4				<4	
11	C_6H_{13}	64	128	128	256	16	32		32	64
12	$C_{10}H_{21}$	32	64	32	64	32	256		32	128

Results and discussion: Broad spectrum antimicrobial activity


		Staphylococcus aureus subsp. aureus Rosenbach ATCC ® 6538™		Vancomycin-resistant Staphylococcus aureus (VISA) CIP 106760		Staphylococcus aureus CIP 106414, ATCC 700699	Staphylococcus aureus subsp. aureus Rosenbach ATCC 43866	
Compounds	Aliphatic chain	MIC (mg/L)	MBC (mg/L)	MIC (mg/L)	MBC (mg/L)	MIC (mg/L)	MIC (mg/L)	MBC (mg/L)
Levofloxacin	Н	<4	(IIIg/L) <4	128	256	<4	(111g/ L) <4	(***6/ 5/ 5/
1	$C_{6}H_{13}$	64	128	256	256	64	64	256
2	C_7H_{15}	64	64	128	256	64	64	128
3	C_8H_{17}	32	32	32	64	32	16	32
4	C_9H_{19}	8	16	8	16		8	16
5	$C_{10}H_{21}$	8	16	8	256	8	8	16
6	$C_{11}H_{23}$	8	256	16	256		16	128
7	$C_{12}H_{25}$	16	256	128	256	64	8	256
8	$C_{13}H_{27}$	32	256	128	256		64	256
9	$C_{14}H_{29}$	32	256	128	256	128	32	256
10	$C_{16}H_{33}$	256	256	128	256	128	64	256
Ciprofloxacin	Н	<4	<4	128	256	<4	<4	
11	C_6H_{13}	64	128	64	128	64	64	128
12	$C_{10}H_{21}$	16	32	16	32		32	64

Retains bioactivity against resistant bacteria!

Conclusions

Reduction in MIC values compared to parent compounds

Fluoroquinolone esters as a drug: new characteristics

- Diverse activity agains gram-positive and gram-negative bacteria
- > Optimal chain lenght for gram-positive antibacterial action
- Bioactivity observed against fluoroquinolone-resistant bacterial strain

Diverse mode of action

This work was supported from grant PTDC/SAU-INF/28080/2017 from Fundação para a Ciência e Tecnologia (FCT) and had also financial support from FCT (via ImedULisboa) from projects UIDB/04138/2020 and UIDP/04138/2020.

Research Institute for Medicines

Thank you for your attention

