

SYNTHESIS OF METHYLIDENE-1-TETRALONE DERIVATIVES WITH POTENTIAL ANTI-CHAGASIC ACTIVITY

Zuleyma Blanco¹*, Xenón Serrano², Alí Mijoba^{1,2}, Gricela Lobo¹ and Jaime Charris¹*

¹Organic Synthesis Laboratory, Faculty of Pharmacy, Central University of Venezuela, 47206, Los Chaguaramos 1041-A, Caracas, Venezuela

² Laboratory of Biology and Chemotherapy of Tropical Parasitosis of the Foundation Institute for Advanced Studies (IDEA) Health Area, Hoyo De la Puerta - El Placer Highway, Caracas, 1080, Capital District, Venezuela.

* Corresponding author: jaime.charris@ucv.ve, blancomzule@gmail.com

Synthesis of methylidene-1-tetralone derivatives

Intermediates **3-6** were generated through simple nucleophilic substitution of **1** with **2**. Final compounds **7-22** were generated through a Claisen-Schmidt cross aldol condensation between **3-6** and the 1-tetralone respective (scheme 1), the final products were obtained between 41-96% yield. The synthesized compounds **7-22** were characterized using modern spectroscopic techniques of ¹H NMR, ¹³C NMR and IR taken in a Perkin Elmer with Fourier transform.

Biological Results

Compounds **19** and **20** exhibited moderate trypanocidal activity, while compounds **21** and **22** showed a marked inhibitory effect on the growth of the epimasigotes of *T. cruzi* (table I).

Conclusions

These compounds **19-22** showed higher trypanocidal activity than the reference drug Bnz, they were selective and cytotoxic, which could be considered as promising future compounds as trypanocidal agents to treat CD in America.

Table I. Evaluation of the anti-chagasic activity of the derivativesmethylidene-1-tetralone 7-22 on *T. cruzi* epimastigotes, VERO cells andBMDM cells, by the MTT method.

			IC ₅₀ (μΜ) 72 h			
COMPOUND		R ₁	R ₂	<i>T. cruzi</i> (YBM)	VERO	BMDM
\mathbf{x}_{1}	7	н	н	> 60	> 100	> 1000
	8	н	5-OCH ₃	> 60	< 100	> 1000
	9	н	6-OCH ₃	> 60	89 ± 15	< 1000
	10	н	7-OCH ₃	> 60	< 100	< 1000
	11	F	н	> 100	_	_
	12	F	5-OCH ₃	> 100	_	_
	13	F	6-OCH ₃	> 100	_	_
	14	F	7-OCH ₃	> 100	_	_
	15	Br	н	> 100	_	_
	16	Br	5-OCH ₃	> 100	_	_
	17	Br	6-OCH ₃	> 100	_	_
	18	Br	7-OCH ₃	> 100	_	_
	19	CI	Н	57.38 ± 3.60	> 1000	> 1000
	20	CI	5-OCH ₃	35.5 ± 10	103 ± 15	> 1000
	21	СІ	6-OCH ₃	5.03 ± 0.49	> 100	468
	22	СІ	7-OCH ₃	4.91 ± 0.98	100 ± 16	> 1000

19-22 It can be inferred with this limited number of compounds, that the type of halogen in position 4'' (\mathbf{R}_1) of the aromatic ring and a methoxy substituent in position 6 or 7 of tetralone play an important role in favoring the activity and selectivity of this type of chalcones as trypanocides.

VERO = African green monkey kidney epithelial cells **BMDM** = mouse bone marrow derived macrophage cells **Positive control** = benznidazole (Bnz) (IC₅₀ = 20 μ M) on *T. cruzi*, benznidazole (Bnz) (IC₅₀ = 120 μ M) on VERO and BMDM cells

REFERENCES

Santos S, Vinicius de Araújo R, Giarolla J, El Seoud O, Ferreira E. Searching for drugs for Chagas disease, leishmaniasis and schistosomiasis: a review. *Int J Antimicrob Agents*. **2020**; 55: 1 - 23. Espinosa Bustos C, Vázquez K, Varela J, Cerecetto H, Paulino M, Segura R, Pizarro J, Vera B, González M, Zarate A, Salas C. New aryloxy-quinone derivatives with promising activity on *Trypanosoma cruzi*. *Arch Pharm Chem Life Sci.* **2020**; 353: 1 - 11.

ACKNOWLEDGEMENTS

✓ To the Council for Scientific and Humanistic Development (CDCH) of the Central University of Venezuela.
✓ To the Institute of Pharmaceutical Research of the Faculty of Pharmacy Central University of Venezuela.

The 7th International Electronic Conference on Medicinal Chemistry 01–30 NOVEMBER 2021 ONLINE